Seminar Work (KI/KPAR)

Lecturer: prof. Zbyšek Posel

Information

Date:	15. 05. 2024
Terms:	- The language for seminar work is English.
	- Seminar work contains program part (codes in Python) and
	text part (document Word/pdf with details).
	- Cooperation is allowed on program part.
	- Text part is submitted individually.
	- Text part contains:
	i) topic description
	ii) details including description of solutions, simplified
	code layout or workflow,
	iii) results (Figures, tables etc.),
	iv) Final report including literature
Deadline	No later than 04. 07. 2024
	Not seminar work nor its corrections will be accepted after the
	deadline.

Calculation of Fourier transformation in CUDA using Numba package

Write the CUDA kernel for calculating the Discrete Fourier transformation (DFT), where DFT calculates the contribution of k-th frequency as follows

$$\overline{S_k} = \sum_{n=0}^{N-1} s_n e^{-i\frac{2\pi}{N}nk}$$

Evaluate the following matrix equation

$$\begin{pmatrix} \overline{S_0} \\ \overline{S_1} \\ \overline{S_2} \\ \vdots \\ \overline{S_{N-1}} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & W^1 & W^1 & \dots & W^{N-1} \\ 1 & W^2 & W^3 & \dots & W^{N-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & W^{N-1} & W^{N-2} & \dots & W^1 \end{pmatrix} \begin{pmatrix} S_0 \\ S_1 \\ S_2 \\ \\ S_{N-1} \end{pmatrix}$$

where $W = e^{-i\frac{2\pi}{N}}$ using DFT or FFT variants.

- In case you choose DFT, implement any standard method for evaluation the matrix equation and construct the *W* matrix by yourself.
- In case you choose FFT, implement Cooley Tukey algorithm for fast evaluation of matrix equation.
- Compare the results with one of the options listed below
 - Numpy *fft* implementation
 - *cuFFT* CUDA function
 - o *cupy.fft* from CuPy package

Deliver these graphical outputs:

- Original function and its spectra obtained from DFT, FFT and from Numpy fft.
- Comparison of scaling behaviour (Numpy, DFT, FFT) with increasing *N*.