
Programování pro mobilní platformy

KI/PMP

Jiří Fišer

Ústí nad Labem 2020

Kurz: Programování pro mobilní platformy

Obor: Aplikovaná informatika

Klíčová slova: programování, Android

Anotace: Kurs je zaměřen na praktické programování pro mobilní platformy (mobil-
ní telefony, tablety), přičemž pozornost je věnována typickým rysům těch-
to platforem – prodloužený životní cyklus aplikace, sandboxing, dynamičtěj-
ší GUI a integrace se specifickými hardwarovými a softwarovými službami.
Konkrétní platforma bude volena podle aktuálních požadavků (uplatnění na
pracovním trhu, dostupnost hardwaru). V rámci kursu budou vytvářeny apli-
kace středního rozsahu ukazující klíčové aspekty zvolené platformy.

Jazyková korektura nebyla provedena, za jazykovou stránku odpovídá autor.

© Katedra informatiky, PřF, UJEP v Ústí nad Labem, 2016

Autor: Jiří Fišer

Obsah

Úvodní slovo 4

1 Android z pohledu programátora 5
1.1 Jak lze v Androidu programovat . 5
1.2 Java a Android . 6

2 Vývojové prostředí Android Studio 8
2.1 Instalace . 8
2.2 Vytvoření nové aplikace (projektu) . 9
2.3 Spuštění . 12

3 Základní struktura programu a 2D grafika: Mandelbrotka 14
3.1 Mandelbrotova množina . 14
3.2 Aktivita — jádro Androidí aplikace . 15
3.3 Vytvoření projektu a jeho počáteční struktura . 16
3.4 Vytvoření třídy pohledu (view) . 17
3.5 Interakce: dotyky a menu . 28

4 Internetové služby a persitentní úložiště dat : Převodník měn 35
4.1 Zadání . 35
4.2 Návrh . 35
4.3 Vytvoření resp. import projektu . 36
4.4 ContentsProvider — přístup k databázi . 37
4.5 UpdateService — čtení dat na pozadí . 42
4.6 Hlavní aktivita — seznamový pohled . 46
4.7 CalculatorActivity — aktivní formulář . 49

5 Geolokace 56

6 Sensory 57

3

Úvodní slovo

Výstupní znalosti
Absolvent kursu je připraven navrhovat a implementovat středně složité aplikace pro Android s vyu-
žitím některých hardwarových a softwarových služeb tabletů a mobilních telefonů.

Seminární úkol
Seminárním úkolem je vytvoření aplikace pro mobilní platformu Android.
Aplikace musí splňovat tyto minimální požadavky:

• alespoň dvě aktivity
• služba na pozadí
• použití alespoň jednoho z klíčových témat: persistentní úložiště, přístup k webové službě, geolo-
kace, využití sensorů (kombinace je samozřejmě také možná)

Výstupem seminárního úkolu je komentovaný zdrojový kód a UML třídní diagram uživatelských tříd.
Příklady seminárních úkolů z minulých let:

• jednoduchý simulátor pražského orloje
• rozhraní ke webové službě univerzitního systému STAG
• activity logger (využití senzoru zrychlení)

Klíčové pojmy
Pojmy uvedené na levém okraji textu (a v textu zvýrazněné tučně) jsou tzv. klíčové pojmy. Jejich správ-klíčový pojem
né a plné pochopení je nezbytné pro další studium. Je samozřejmou součástí zkoušek (a to i zkoušek
navazujících předmětů resp. státní závěrečné) a jejich znalost se předpokládá i v rámci obhajoby semi-
nární práce.
Většinu z nich můžete najít v doporučené literatuře a jsou popsány i v anglické Wikipedii (anglický
překlad je uveden, s výjimkou termínů, kde je zřejmý). V oblasti informatiky jsou články anglické Wi-
kipedii (ve většině případů) velmi kvalitní, s rozsahem přesahujícím popis uvedený v opoře a takmohou
být využity k dalšímu zpřesnění prohloubení znalostí. Navíc obsahují odkazy na další hodnotné zdroje.

4

1 Android z pohledu programátora

CÍLE KAPITOLY
Kapitola popisuje (ve stručnosti) různémožnosti vytváření aplikací na platforměAndroid (některé alter-
nativní přístupy byste mohli i vyzkoušet). Hlavním cílem je nicméně stručný úvod do procesu vytváření
nejběžnějších nativních aplikací — využití Javy a standardního API Androidu (SDK).

1.1 Jak lze v Androidu programovat
Android je moderní a komplexní operační systém, který nabízí několik možností tvorby aplikací pro-
střednictvím různých programovacích jazyků a platforem, a to na různých úrovních abstrakce

• aplikace pro webové prohlížeče (HTML 5 skriptování na straně klienta). Tyto aplikace jsou pře-
nositelné i na jiné mobilní platformy či dokonce na platformy desktopové. Díky specializovaným
knihovnám, jako je například PhoneGap mohou mít tyto aplikace přístup ke specializovanému
hardwaru (kamera, akcelerometr, GPS) a mohou být lépe integrovány do infrastruktury ope-
račního systému (notifikace, sítový přístup, kontakty, souborový přístup). Klíčová je i podpora
limitovaného GUI s podporou dotykového vstupu (např. jQuery Mobile). Řešením je pouze tzv.
rooting Androidu (tj. obejití bezpečnostního mechanismu, tím že je dovolen superuživatelský
přístup) a doi

• použití obecných vysokoúrovňových skriptovacích jazyků (Python, Ruby, apod.). Tyto jazyky
nabízejí své rozsáhlé univerzální knihovny, aby však byly využitelné pro tvorbu plnohodnotných
aplikací musí opět nabízet alespoň částečnou integraci do infrastruktury OS (včetně podpory
specializovaného hardwaru). Výhodou je i (pokudmožno přenositelná) GUI knihovna s podporou
moderního přístupu ke tvorbě GUI aplikací. Určité zkušenosti mám především s portem Pythonu
(QPython) a knihovnou Kivy.

• programování nativních aplikací s využitím Javy a standardního API Androidu (Android SDK).
Valná většina aplikací pro Android je naprogramována tímto způsobem. Javovský kód pro An-
droid využívá relativně vysokou úroveň abstrakce a podporuje plnou integraci do infrastruktury
Androidu, včetně spolupráce s ostatními aplikacemi. Je také jako jediný plně podporován firmou
Google, tvůrcem a správcem Androidu. To mimo jiné znamená, že zajišťuje vysokou míru kom-
patibility s různými hardwarovými platformami. Na druhou stranu je Java relativně rozvláčný
jazyk a v Androidu je tento rys ještě výraznější.

• na stejné úrovni abstrakce jsou i některé přenositelné platformy třetích stran, které přímo vy-
užívají Android API. Příkladem je knihovna Xamarin (využívající jazyk C# a překladač Mono)
a Qt.

• pro vytváření kódu, který vyžaduje přímý přístup k hardwaru resp. efektivnější využití paměti
lze využít Android NDK (jazyky C resp. C++). Tímto způsobem jsou však implementovány jen
části aplikací (např. fyzikální výpočty, apod.). Přístup ke GUI je na této úrovni výrazně omezen.

• terminálově orientované unixovské aplikace (CLI) nelze v Androidu nativně používat (přestože
Android využívá jádro Linuxu). Android však využívá zcela jiný model běhu aplikací (především
bezpečnostní) a neposkytuje implicitně textový shell a četné standardní knihovny jazyka C. Ře-
šením je pouze tzv. rooting Androidu (tj. obejití bezpečnostního mechanismu, tím že je dovolen

5

superuživatelský přístup) a doinstalování potřebného softwaru (což je pro provozování jednodu-
chých GUI aplikací pověstný kanón na vrabce). Klasické textové aplikace lze portovat za pomoci
NDK a emulátoru terminálu (což není bohužel triviální)

Tento výukový materiál se zaměřuje jen na využití standardního SDK za použití jazyka Java. To při-
rozeně znamená, že ostatní přístupy (především využití HTML5 a skriptovacích jazyků) jsou horší. Ve
skutečnosti mají mnohé výhody, avšak rozsah tohoto materiálu neumožňuje popsat všechny alternati-
vy.

1.2 Java a Android
Nejdůležitějším programovacím jazykemnaAndroidu je Java. Na první pohled semůže zdát, že se jedná
o klasickou Javu známou z dalších platforem. Na úrovni syntaxe tomu tak opravdu je (pro Android lze
využít jakoukoliv modernější verzi standardní Javy od verze 7 včetně).
Jinak je tomu na úrovni knihoven. Android využívá nejen své vlastní knihovny, ale i zcela jiný pro-
gramovací model. Zcela rozdílná je například realizace GUI vrstvy (Android nepoužívá AWT, SWING
nebo JavaFX).
Jen relativně malá číst knihoven z platformy Java SE je dostupná i na Androidu (tím spíše knihovny
jiných javovských platforem jako je Java ME). Naštěstí do této omezené podmnožiny spadají často
používané třídy kolekcí a proudů.
Ještě hlubší rozdíly existují ve fázi vykonávání bytového kódu, který se získá překladem javovského
kódu. Android používá vlastní běhové prostředí označované jako ART, který využívá zcela odlišnýART
bytový kód (tento kód je společný s původním virtuální strojem s JIT kompilací, jenž byl označován jako
Dalvik). Tento bytový kód je registrově orientovaný (standardní bytový kód JVM využívá primárně
zásobník podobně jako je tomu na platformě .NET). Dalvik bytový kód by měl být optimalizován pro
limitovaná zařízení (je například o něco kompaktnější), ale existuje k němu jen minimum dokumentace
(i ve vyhledávači Google je původní stroj Dalvik málem předběhnut islandskou obcí Dalvík s 1454
obyvateli). ART nepoužívá strategii JIT (just-in-time kompilace), ale AOT (ahead-of-time compilation)
tj. bytový kód se do strojového přeloží již při instalaci (výsledkem je běžný unixový spustitelný soubor).
Tento rozdíl se však navenek příliš neprojevuje. Zesložiťuje procesní řetězec, neboť vkládá další krok
do procesu překladu javovského kódu. Javovský kód je nejdříve přeložen do JVM bytového kódu (pří-
pona .class) a pak do kódu Dalviku (přípona .dex). To se však navenek příliš neprojevuje, neboť překlad
v Android Studiu (resp. jiném vyspělém IDE) je prováděn automaticky na pozadí při spuštění emulá-
toru a zajistí všechny nezbytné kroky (kromě překladu Java → JVM → Dalvik, je to i zabalení do
instalačního balíku s příponou APK) .

6

OTÁZKY
1. Jaké části knihoven jsou společné pro Android a standardní Javu (Java SE)?
2. Jaký je rozdíl mezi JIT a AOT kompilací?

OTÁZKY K ZAMYŠLENÍ
1. Jaké jsou výhody a nevýhody použití bytového kódu a virtuálního stroje na mobilní platformě?
2. Jakou přidanou hodnotu nabízí specializovanéHTMLmobilní frameworky oproti běžnýmknihov-

nám (např. jQuery Mobile oproti jQuery)?

7

2 Vývojové prostředí Android Studio

CÍLE KAPITOLY
Tato kapitola popisuje stručně postup instalace vývojového prostředí Android Studio. Toto prostředí je
k dispozici volně pro všechny hlavní desktopové platformy včetně Linuxu.
Instalace je snadná a tak se popis zaměřuje jen na klíčové konfigurační volby. Popsán je stav ve verzi
1.5. V novějších verzích se může nastavení lišit (i když základní principy jako je volba API zůstanou
s vysokou pravděpodobností zachovány)
Hlavním Vaším cílem je úspěšná instalace a vytvoření testovací aplikace, včetně jejího ověření v emu-
látoru či reálné zařízení. Pokud při tomto procesu k chybě, zkuste nejdříve najít informaci na Internetu
(problémy jsou často omezeny jen na menšinu systémů a vyučující s nimi nemusí mít žádnou zkuše-
nost).

2.1 Instalace
Aplikace pro Android lze vytvářet v libovolném vývojovém prostředí poskytujícím, alespoň minimální
podporu pro jazyk Java a spouštění externích nástrojů. Tvorba aplikací v Androidu vyžaduje minimálně
tyto nástroje:

1. JAVA SE SDK (typicky od Oraclu), minimální verze Java 7, základní knihovny a překladače
2. Android SDK (od Googlu) — obsahující knihovny, překladače a emulátory
3. sestavovací nástroj (zajistí správné provedení celého kompilačního řetězce) — minimálně make,

ale vhodnější je vyspělejší nástroj s přímou podporou Android nástrojů jako např. Gradle
Celý vývojový systém je dnes již dost komplexní a jeho udržování není snadné: Proto se doporučuje
využít IDE s přímou podporou vývoje pro Android. My budeme využívat IDE Android Studio, což je
původní editor IntelliJ IDEA upravený a přizpůsobený pro Android projekty. Toto vývojové prostředí
vytvořila a spravuje firma Google. Je relativně nový (prosinec 2014) avšak již od svých počátků byl
navrhován jako základní vývojový nástroj pro Android (nahradil tak původní plugin pro Eclipse).
Instalace je v zásadě jednoduchá a provádí se v těchto krocích:

1. stažení Java SE JDK (minimálně verze 1.7, nestačí JRE), nejlépe přímo od firmy Oracle
2. kontrola zde je v PATH odkaz na překladač javac
3. stažení Android Studio
4. rozbalení (jedná se o ZIP, TGZ, instalační EXE)
5. první spuštění (v rámci, něhož se stahuje i Android SDK)

Upozornění: Celkově se stahuje více než 1GiB dat a to i v minimální konfiguraci (reálně spíše ke 1,5
GiB). Také ostatní hardwarové nároky nejsou malé. Procesor spíše třídy Core i-5 a minimálně 4GiB
paměti (pro běh emulátoru je lepší 8GiB).
Při prvním spuštění stačí zvolit standardní instalaci, která proběhne téměř bez interakce. Výjimkou
je volba verze SDK. Předvoleno je nejvyšší aktuální SDK (to je určeno verzí Androidu, na obrázku 6.0
a číslem tzv. API na obrázku je to 23). Moderní SDK podporují i vytváření aplikací pro nižší verze (menší
API). Pro ověření běhu v nativním prostředí (především v emulátoru) je možné přidat i nižší API (na
obrázku je to API 15, což je API mého mobilního telefonu).

8

SDK lze samozřejmě přidávat resp. aktualizovat i poté (ve File | Settings).
Po dokončení instalace se zobrazí hlavní menu průvodců a my jsme připraveni vytvořit první aplikaci
pro Android.

2.2 Vytvoření nové aplikace (projektu)
Pro ověření funkčnosti aplikace (a stažení obrazů jádra, pokud používáme emulátor) je dobré vytvořit
a spustit testovací aplikaci.
V hlavním menu průvodců zvolte Start a new Android Studio project.

Nastavení není složité. Většina nastavení se provede v prvním ze čtyř formulářů.

9

Aplication name je jméno aplikace, tak jak bude vidět koncový uživatel. Jeho pozdější změna je velmi
obtížná, tj. je nutné volit uvážlivě.
Company domain je doménová část adresy tvůrce, sloužící (v opačném gardu) jako prefix balíku (jmen-
ného prostoru). Můžete uvést jakoukoliv doménu, u níž můžete zajistit jedinečnost jmen všech balíků
(tj. danou doménu spravujete).
U project location zkontrolujte, zda cesta ukazuje rozumné umístění (základem je tzv. workspace adre-
sář). Umístění lze samozřejmě změnit.
Druhý formulář průvodce slouží k nastavení typu API a minimálního SDK.

10

V rámci této opory budeme používat pouze klasické Android API pro telefony a tablety. Volba mini-
málního SDK ovlivňuje podíl Android zařízení s nimiž bude aplikace kompatibilní. Čím nižší API tím
větší počet cílových zařízení, ale také méně použitelných GUI prvků (i když mnohé nové prvky jsou
v současnosti dostupné i na starších API díky knihovnám pro zpětnou kompatibilitu).
V rámci kurzu budeme používat minimální API 15 (tj. verze 4.0.3 a vyšší).
V dalším formuláři zvolíme vzhled tzv. hlavní aktivity (tj. vzhled centrálního okna aplikace). Zvolte
„Empty activity“ (zcela prázdná aktivita). V dalším okně můžete třídu aktivity přejmenovat, ale to je
prozatím zbytečné, tj. stačí průvodce ukončit tlačítkem „Finish“.
Po určité době se vytvoří nový projekt a zobrazí grafický návrhář rozložení. Pro nás je teď zajíma-
vější kód aktivity a tak projektovém editoru (vlevo, záložka project), klikněte ve složce app/java/-
cz.ujep.ki.testapplication na položkuMainActivity (pozor nikoliv ve složce označené navíc androidTest!).
Otevře se editor Javy nad kódem dané třídy. Prostředí by mělo vypadat podobně jako na následujícím
snímku obrazovky (všimněte si, že zobrazen je celý třídy, veškerá další funkčnost je zděděna).

11

2.3 Spuštění
Pokud chcete aplikace ladit na svém zařízení s Androidem postačuje jeho propojení s počítačem pomocí
USB kabelu a povolení ladění v nastavení Androidu na daném zařízení (sekce Vývojářská nastavení).
Připojení proveďte ještě před spuštěním aplikace.
Ladící běh spustíte vmenu Run | RunApp (resp. odpovídajícím tlačítkemna nástrojové liště nebo stiskem
Shift + F10). Po chvíli by se mělo objevit dialogový box určující zařízení, na němž program poběží.

Pokud máme připojeno Android zařízení a toto zařízení bylo rozpoznáno, tak je přednastaveno (v sekci
Choose a running device). Pokud zařízení nemáte musíte nakonfigurovat a spustit emulátor. Pro vytvo-
ření nové konfigurace emulátoru stiskněte tlačítko vpravo od rozbalovacího tlačítka „Android virtu-
al device“ (při prvním spouštěné obsahuje text [none]). V první fázi se volí typ zařízení podle vzoru
(pokud nemáte dostatek paměti a výkonu volte menší zařízení a nižším rozlišením) a následně verze
Androidu, který na něm běží. Fungovat budou jen ty verze, pro něž máte nainstalováno i SDK. Proto
je nejjednodušší zvolit obraz odpovídající nejvyššímu API (bez Google map), neboť toto SDK se insta-
luje automaticky. Z důvodů efektivity volte obraz pro procesory Intel (32 nebo 64 podle verze OS na
počítači).
Výsledná konfigurace by může vypadat například takto (můžete samozřejmě vyzkoušet i další kombi-
nace, a ani jméno není povinné).

12

Po návratu z konfigurace dané zařízení nastartujte (vhodné je zaškrtnout volbu Use same device for
future launches) a po několika desítkách sekund se dočkáte okna s emulátorem, v němž bude po další
chvíli spuštěna daná aplikace (prozatím prázdné okno). Spuštění emulátoru je pomalé i na rychlejších
strojích a proto okno s emulátorem nechte otevřené. Při dalším testovacím spuštění aplikace se virtuální
stroj nemusí startovat a spuštění je výrazně rychlejší.

13

3 Základní struktura programua 2Dgra-
fika: Mandelbrotka

CÍLE KAPITOLY
Ukázková aplikace pro vykreslení fraktálu Mandelbrotovy množiny ilustruje následující mechanismy
programování v Androidu:

1. životní cyklus aplikace
2. základní interakce s tzv. aktivitou (obdoba aplikačního okna u desktopových aplikací) — menu
3. základní 2D vykreslování (bez použití OpenGL ES)
4. využití asynchronních vláken
5. reakce na vstupní události (dotyky)

Tato aplikace není zcela klasickou Androidí aplikací, tvoří však dobrý přechod mezi běžnými deskto-
povými aplikacemi a komplexnějšími aplikacemi v Androidu. Navíc skvěle vypadá :)

3.1 Mandelbrotova množina
Mandlebrotova množina je jedním z nejznámějších fraktálů.
Madelbrodova množina je množina komplexních čísel 𝑐, pro která je posloupnost
𝑧0 = 0, 𝑧𝑛+1 = 𝑧2𝑛 + 𝑐
omezená, tj. že splňuje následující podmínku:
Existuje reálné číslo 𝑚 takové, že pro všechna 𝑛 ∈ ℕ je |𝑧𝑛 | < 𝑚.
Velmi kvalitní popis tohoto fraktálu najdete na anglické Wikipedii (http://en.wikipedia.org/wiki/
Mandelbrot_set, z tohoto článku jsou převzaty i ilustrativní obrázky).
Mandelbrotova množina je souvislá množina bodů, jejíž grafem je zvláštní 2D útvar s podivnými střa-
patým okrajem (avšak bez vnitřní struktury).

14

http://en.wikipedia.org/wiki/Mandelbrot_set
http://en.wikipedia.org/wiki/Mandelbrot_set

V počítačové grafice se však dává přednost representaci, v níž se zohledňuje i rychlost konvergence.
Výsledný fraktál takmůže být tvořen několika (barevnými) přechody. Tento přístup zvolíme i my, neboť
jen tak využijeme krásně barevné displeje současných tabletů a mobilních telefonů.
Typická ukázka konvergentní representace Mandelbrotovy množiny tzv. mořský koník (vyskytuje se
mimo jiné u styku jednotlivých kruhovitých a kardoidních útvarů).

Matematik by začal návrhem a programováním algoritmu pro vykreslení fraktálu, praktik však začne
vytvářením kostry aplikace, neboť algoritmus může najít přímo na stránkách anglické Wikipedie (není
v Javě, ale v tzv. pseudokódu, ale převod je snadný).

3.2 Aktivita — jádro Androidí aplikace
Struktura aplikace je v Androidu ovlivněna několika základními východisky (zjednodušeno):

• aplikace využívá grafické uživatelské rozhraní pro interakci s uživatelem (přičemž jako vstup
jsou preferovány dotyky)

• aplikace je v zásadě nesmrtelná, je prováděna (alespoň se tak navenek jeví) od prvního spuštění
až po (případnou) deinstalaci

• pouze jedna aplikace je tzv. na popředí tj. využívá displej pro interakci s uživatelem
• hardwarové prostředky jsou relativně silně omezené tj. běžící aplikaci může být odebrán nejen
procesor a fyzická paměť, ale i proces a tím i regiony virtuální paměti

Z tohoto důvodu je klíčovým prvkem každého interaktivního GUI programu tzv. aktivita. Aktivitaaktivita
se stará o grafickou interakci s uživatelem v těch okamžicích, kdy je aplikace na popředí. Pokud je
však odsunuta do pozadí, pak se stává neaktivní a po určité době může být spolu s procesem, který
ji vykonává, nemilosrdně zlikvidována (a uvolní tak prostředky potřebnějším procesům). V okamžiku,
kdy je opět potřeba, se vytvoří nový proces a v něm je instanciována nová aktivita.
Aktivita tak prochází během své (takřka) nesmrtelnosti cyklicky mezi dvěma či čtyřmi stavy:

15

Při přechodu mezi stavy je jsou volány metody aktivity, v nichž je možno alokovat prostředky (metody
onCreate resp. onRestart), příslušné prostředky uvolňovat (onStop, onDestroy) resp. ukládat stav aktivity
(onSaveInstanceState) a následně obnovovat (onCreate). Ukládání je nutné, aby navenek vznikala iluze
stále existence aktivity. Nyní jižmůžeme přikročit k vytvoření (vývojářského) projektu z hlavníhomenu
průvodů (předchozí projekt předtím uzavřete).

3.3 Vytvoření projektu a jeho počáteční struktura

Aplikaci pojmenujeme familiárně „Mandelbrotka“. V konfiguraci hlavní aktivity zvolíme opět „Empty
Activity“ a nic nezměníme ani na na posledním konfiguračním listě.
Podívejme se nejdříve jaké soubory pro nás IDE vytvořilo (lze je procházet pomocí prohlížeče projekto-
vých souborů na levé straně). Většina vygenerovaných souborů jsou XML soubory, které deklarativně
popisují konfiguraci aplikace a jejího GUI rozhraní.
Klíčovým souborem je AndroidManifest.xml (ve složce app/manifests). Pro jeho prohlížení lze využít
soubor vestavěných konfiguračních editorů (viz záložky dole). Soubor však lze prohlížet (a editovat)
i přímo pomocí XML editoru (záložka označená AndroidManifest.xml v editační oblasti).

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="cz.ujep.ki.mandelbrotka" >

<application
android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme" >
<activity

android:name=".MainActivity"
android:label="@string/app_name" >
<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

</activity>
</application>

</manifest>

Manifest aplikace obsahuje některé informace, které jsme zadali při jejím vytváření a některá další
nastavení.
U některých nastavení (jako je popisek aplikace android:label) je namísto fixní hodnoty atributu použit
odkaz do souborů zdrojů. Soubory zdrojů (resources) mohou být vytvářeny v několika kopiích např.
pro vícero jazyků nebo vícero typu displejů (rozlišení či velikost). Ve všech těchto případech může
mít atribut jinou (specifickou hodnotu). Například název aplikace se může lišit podle jazyka, použitá
ikona podle rozlišení (při velkém rozlišení by mohla být tak malá, že by ji nešlo snadno identifikovat
dotykem).
Klíčovou částí manifestu je specifikace aktivity. Je specifikováno celé jméno její třídy i se jménem balí-
ku, to jest cz.ujep.ki.android.fiser.MainActivity, ale především je určeno na jaké podněty zvnějšku bude
reagovat. Aktivity jsou v Androidu jsou relativně samostatné programové jednotky, které jsou aktivo-
vány podněty z vnějšku tj. z jiných aktivit. Naše aktivita reaguje na podnět od aktivit, jež fungují jako
launcher, tj. spouštěč aplikací (to nemusí být jen jediná aktivita). To znamená, že se zařadí do seznamu
spustitelných aplikací (jež v běžném rozhraní dostupná přes ikonu mřížky čtverečků).

16

Dalším typem souborů jsou zdroje, které naleznete v adresáři res projektu. Ty jsou členěny podle typů
(rozvržení, jednoduché hodnoty, styly, apod.), přičemž některé se vyskytují ve více verzích podle kon-
figurace cílového systému (API, displej, jazyk, apod.). Tj. například kreslitelné objekty (drawable), se
člení podle rozlišení displeje (low dpi, medium dpi, high dpi a extra vysoké rozlišení [kdy se dočkáme
čtyřikrát x-dpi?]), styly podle čísla verzí apod. Toto rozdělení je však jen počátkem, v plnohodnotné
aplikace mohou být i desítky různých variant.
Pro začátečníka jsou klíčové soubory ve složce values. Například v res/values/strings.xml jsou řetězce,
které vidí uživatel aplikace, včetně např. popisku aplikace:

<string name="app_name">Mandelbrotka</string>

Nyní však pozornost přesuneme na zdrojové soubory ve složce java. Zde jsou organizovány podle ja-
vovských balíčků. My máme prozatím jen jeden balíček, v němž leží jen jeden soubor s jedinou třídou
(v Javě může být jen jediná veřejná třída v souboru). Instancí této třídy bude jediná aktivita naší apli-
kace.

package cz.ujep.ki.android.fiser;

import android.os.Bundle;
import android.app.Activity;
import android.view.Menu;

public class MainActivity extends Activity {

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

}

}

TřídaMainActivity je odvozena ze třídyActivity (přesněji android.app.Activity) a předefinovává dvě její
metody: onCreate, která je volána při každém vzniku aktivity (včetně znovuzrození viz životní cyklus
aktivity výše) a metodu, která připravuje na zobrazení menu (onCreateOptionsMenu). Obě se metody
mají něco společného — využívají prostředky z resource adresáře. V onCreate je vyplněno okno aktivity
pomocí rozvržení (soubor res/layout/activity_main.xml), v nCreateOptionsMenu pak menu položkami
ze souboru res/menu/main.xml). Soubory prostředků se neuznačují přímo, ale pomocí symbolických
konstant, které jsou pro každý soubor v adresáři prostředků automaticky vytvořeny. To má dvě hlavní
výhody:

1. symbolická konstanta vždy odkazuje aktuální variantu podle konfigurace systému (rozlišení, ja-
zyk apod.)

2. funguje doplňování syntaxe. Stačí použít specifický prefix balíku R, zvolit ze seznamu typ pro-
středku a pak přímo jeho jméno.

Aplikaci lze již v tomto okamžiku spustit (Run | Run ’app’, Shift-F10). Start emulátoru je relativně pomalý
a na pomalých zařízeních může trvat i celé minuty. Naštěstí emulátor je nutno spouštět jen jednou (při
dalším spuštění lze použít stejnou instanci, proto ji pokud možno nezavírejte).
Po naběhnutí úvodní obrazovky je nutno tažením odemknout obrazovku (stejně jako u fyzického zaří-
zení i když zde je to zcela zbytečné). Po chvíli by se měla objevit aplikace s titulemMandelbrotka, která
je však zcela prázdná.

3.4 Vytvoření třídy pohledu (view)
Dalším krokem je vytvoření tzv. pohledu — view. Pohled je aktivní část okna aktivity, odpovídá tudížpohled

17

widgetům resp. řídícím prvkům (controls), jak je znáte z ostatních GUI knihoven. Bázová třída (an-
droid.view.View) je pouze pravoúhlá oblast bez viditelných grafických prvků a bez možnosti interakce.
Z této třídy jsou přímo i nepřímo odvozeny všechny aktivní či pasivní prvky prvky, počínaje textovými
popisky, přes různá tlačítka až po složité seznamy.
Náš pohled bude zobrazovat Mandelbrotovu množinu přímým vykreslování a nebude tudíž potřebovat
žádnou dodatečnou funkčnost nabízenou odvozenými třídami pohledů. Odvodíme ji tedy přímo ze třídy
android.view.View.
V IntelliJ se nové třídy vytvářejí pomocí průvodce. Protože i tato nová třída by měla ležet v javovském
balíčku cz.ujep.ki..…, tak je vhodné průvodce vyvolat z kontextového menu, které získáme stiskem pra-
vého tlačítka myši nad jménem balíčku.
V něm zvolte volbu New | UIComponent | CustomView a zadejte jméno MandelbrotView.

public class MandelbrotView extends View {

public MandelbrotView(Context context) {
super(context);

}

public MandelbrotView(Context context, AttributeSet attrs) {
super(context, attrs);

}

public MandelbrotView(Context context, AttributeSet attrs, int defStyle) {
super(context, attrs, defStyle);

}
}

To je však bohužel poslední část kódu, jíž lze generovat plně automaticky. Nyní již musíme začít myslet.
Nejdříve se zamyslíme nad atributy daného pohledu. Pohled je určen dvěma soustavami souřadnic. Prv-
ní je v zásadě pevná a je určena zobrazovacím zařízení či přesněji obdélníkem v sítě pixelů, na němž je
pohled zobrazen (ve skutečnosti není tento obdélník zcela fixní, mění se například při otočení zařízení).
Tato soustava souřadnic má v souladu s tradicí počítačové grafiky počátek (0,0) v levém horním rohu,
pravý dolní roh má souřadnice (šířka - 1, výška - 1).
Druhá soustava souřadnic je dána výřezem komplexní roviny, na níž je Mandelbrotova množina defino-
vána. Může být průběžně měněna, čímž je možno dosáhnout zdánlivého přiblížení či vzdálení (zoom).
Na počátku je zobrazován výřez komplexní roviny v rozsahu -2 až 1 na ose x a -1 až 1 na ose y (do to-
hoto výřezu se vejde celá Mandelbrotova množina). Převody mezi těmito dvěma soustavami souřadnic
tvoří důležitou část vykreslovací části kódu.
Než přistoupíme k implementaci je ještě nutné vzít v potaz rychlost výpočtu Mandelbrotovy množiny
a jejího vykreslování. Výpočet je totiž relativně náročný a na pomalejších strojích může trvat i několik
desítek sekund (především v případě, že nemají hardwarovou podporu výpočtů v pohyblivé řádové
čárce tj. FPU). Během této doby by aktivita nereagovala na akce uživatele (včetně například pokusu
o její zdánlivé ukončení přepnutím na domovskou obrazovku). Protože je toto chování nežádoucí, snaží
se Android tyto aplikace detekovat a pokud nereagují déle než zvolený interval (v řádu vyšších jednotek
vteřin), pak je nemilosrdně ukončí. Jinak řečeno uživatel by se nemusel vykreslení ani dočkat.
Jediným řešením je přenesení výpočtu Mandelbrotovy množiny do zvláštního vlákna běžícího na po-
zadí (Android vlákna nejen, že podporuje, ale v mnoha případech i doporučuje). Tím však vzniká další
problém — vlákno na pozadí nemůže kreslit do pohledu (resp. obecně nijak manipulovat s GUI). Proto
je nutné kreslení rozdělit do dvou fází. Nejdříve je ve výpočetním vlákně využito kreslení do bitmapy
uložené v paměti (to může trvat i desítky sekund) a až poté jeho skončení je v hlavním (GUI) vlákně
bitmapy zkopírována do pohledu (to už trvá jen milisekundy). Během výpočtu sice omezíme interakci
s uživatelem (nemůže například používat dotyky pro zoom), ale základní ovladatelnost zůstává zacho-
vána.

18

Tento rozbor nám již umožňuje navrhnout datovou representaci stavů pohledu (tj. neveřejné členy
instancí třídy).

private Rect dc;
private RectF mc;
private Bitmap actualBitmap = null;
private Paint paint = new Paint();
private boolean backgroundThread = false;
public float progress = 0.0f;

Datový člen dc representuje výřez v souřadnicovém systému displeje (zkratka za display coordination).
Pro representaci je využívána instance třídy android.graphics.Rect, která representuje obdélník v celo-
číselných souřadnicích. Člen dc naproti tomu representuje odpovídající obdélník v komplexní rovině
(zkratka za mathematics coordination). Je to instance třídy android.graphics.RectF, která representuje
obdélník v reálných souřadnicích (tj. v souřadnicích typu float).
Poznámka: Třídy jsou uvedeny bez prefixu balíčku (= jmenného prostoru), neboť všechny použité ba-
líčky jsou importovány. Importování je výrazně zjednodušeno tím, že příslušný příkaz je automatic-
ky vložen při doplňování syntaxe. Stačí jen napsat první tři–čtyři znaky jména třídy a pak stisknout
Ctrl+Space. Z nabídnutého seznamu vyberte požadovanou třídu, která je pak nejen doplněna, ale je
vložen i příkaz pro importování příslušné třídy z balíčku (pokud již není samozřejmě obsažen).
Další datový člen representuje bitmapu, která má být aktuálně vykreslována (instance třídy andro-
id.graphics.Bitmap). Zbývající členy jsou využívány buď při vykreslování (paint) nebo souvisí vláknem
generujícím bitmapu (progress a backgroundThread), těm se budeme věnovat až o něco později.
Všechny datové členy jsou v souladu s principem zapouzdření privátní a nelze je tudíž používat mi-
mo instance třídy MandelbrotView. V případě matematických souřadnic (mc) by však bylo záhodno
umožnit získání a dokonce i změnu zvnějšku (například, pokud bychom chtěli v budoucnu podporo-
vat ruční nastavení výřezu nebo galerii oblíbených výřezů). Proto dodáme dvojici metod pro získání
(getter) a nastavení (setter) tohoto atributu (vlastnosti).

public RectF getMc() {
return mc;

}

public void setMc(RectF mc) {
this.mc = mc;

}

Getter i setter je prozatím triviální (nic se nekontroluje, nemění se ani representace). Triviální gettery
a settery je možno automaticky generovat pomocí nástroje Source | Generate Getters and Setters.
Vytvořený setter ihned použijeme pro inicializaci matematické soustavy souřadnic v konstruktorech
(nastavíme výřez, který zajistí vykreslení celé množiny). Protože to musíme učinit ve všech třech kon-
struktorech, vytvoříme pomocnou metodu pro inicializaci (v Javě nelze vzájemně volat konstruktory).

public MandelbrotView(Context context) {
super(context);
init();

}

public MandelbrotView(Context context, AttributeSet attrs) {
super(context, attrs);
init();

}

public MandelbrotView(Context context, AttributeSet attrs, int defStyle) {
super(context, attrs, defStyle);

19

init();
}

public void init() {
setMc(new RectF(-2.0f, 1.0f, 1.0f, -1.0f)); //implicitní výřez

}

Stejně jako je tomu v případě ostatních GUI knihoven, je jádrem implementace uživatelského pohledu
ošetření událostí vznikajících při interakci naší aplikace s uživatelem a okolím. V první verzi budeme
ošetřovat jen dvě události: změnu velikosti pohledu (musíme změnit souřadnice zařízení a nastartovat
generování nové bitmapy) a požadavek na překreslení (musíme nakreslit aktuální bitmapu). Návrho-
vý vzor pozorovatel (observer), který se pro ošetření událostí používá (objekt pohledu se zaregistruje
u manažera událostí a pokud daná situace nastane pak je mu automaticky předáno řízení) je v Javě im-
plementován pomocí dynamického polymorfismu založeného na rozhraních. Každý objekt, který chce
být informován o změnách musí implementovat rozhraní, jehož metody ošetřují jednotlivé události
(jména těchto rozhraní jsou standardně zakončena slovem Listener, neboť objekt jakoby naslouchá na
konci telefonní linky a je probuzen při vzniku události).
V případě událostí změny velikosti pohledu a požadavku překreslení však není nutné žádné rozhraní
explicitně implementovat, neboť příslušné (naslouchací) rozhraní implementuje již bázová třída View.
Proto stačí dané metody jen předefinovat.

@Override
protected void onSizeChanged(int w, int h, int oldw, int oldh) {

dc = new Rect(0, 0, w, h);
generateNewBitmap();

};

@Override
protected void onDraw(Canvas canvas) {

if (actualBitmap == null){
paint.setColor(Color.WHITE);
canvas.drawColor(Color.BLACK);
String text = String.format("Wait, please (%.0f%%)", progress * 100);
canvas.drawText(text, 30, 30, paint);
return;

}
canvas.drawBitmap(actualBitmap, 0, 0, paint);

}

Kód metody onSizeChanged (je volána při změně velikosti pohledu) je více než jednoduchý. Pomocí
parametrů metody totiž získáme novou šířku w a šířku h pohledu. Poté stačí jen definovat obdélník
definující novou zobrazovací soustavu souřadnic dc a nastartovat generování nové bitmapy.
Vykreslovací metoda není o mnoho složitější. Pokud není bitmapa k dispozici (to nastává nejen na
začátku, ale i v okamžiku kdy se připravuje nová bitmapa), pak je vykreslen jen bílý text s upozorně-
ním (na černém pozadí). Kreslící plocha je (jak je běžně zvykem) representována instancí třídy Canvas
(android.Graphics.Canvas). Tato instance však nenese stav vykreslovacích nástrojů je tzv. bezestavová
(jako je tomu např. v GDI+).
Z tohoto důvodu se podstatně liší metoda pro vyplnění pozadí (drawColor) od metody (drawText). Za-
tímco vyplnění nepotřebuje znát žádný stav (je jednoznačně zřejmé, co má udělat — nastavit každý
pixel na předanou barvu), je vykreslení textu složitější. Výsledek musí reflektovat nastavení písma,
barvy (popředí), transformační matici, apod. Tyto informace však nejsou uloženy jako (globální) stav
plátna, ale musí být předány jako atributy instance třídy android.graphics.Paint.
Objekt této třídy vytvořen v jedné kopii již při vzniku pohledu (odkazuje na něj datový člen paint),
neboť v rámci vykreslovací metody by se neměly vytvářet nové objekty (jako varování to označí tzv.

20

lint tj. program, který na pozadí kontroluje prohřešky proti stylu uplatňovaném při programování pro
Android). Před každým použitím vmetodě pro vykreslení textu je však nastaven jeho atribut (vlastnost)
Color, který u textu representuje barvu popředí. Ostatní atributy (např. použitý řez písma) si zachovávají
standardní nastavení (u písma je to např. systémový font).
Pro formátování výstupního řetězce je použita statická metoda třídy String (pro C# programátory: po-
zor název třídy musí začínat velkým písmenem). Pro formátování se používají stejné popisovače jako
v jazyce C (a dalších mnoha jazycích, bohužel mimo C#). Kromě fixního textu je vypsán i údaj o pokro-
ku při generování nového obrázku. Ten je uložen v datovém členu progress a nabývá hodnot [0, 1] (kde
1 representuje přirozeně 100%).
Nyní už se pomalu k blížíme k jádru aplikace, neboť nám zbývá již jen jediný krok — vygenerování
bitmapy s Mandelbrotovou množinou. Jak jsem však již předeslal, vše je zkomplikováno tím, že tato
činnost musí být provedena ve vlastním vlákně.
API Androidu nabízí hned několik tříd, které udělají z Vašeho programu vícevláknovou aplikaci. Zá-
kladním řešením je podpora klasického javovského řešení — třídy Thread. Její využití je snadné, stačí
buď v odvozené třídy předefinovat metodu run (ta pak bude vykonána v nově vzniklém vlákně) nebo
zavolat konstruktor bázové třídy a předat jí instancí implementující rozhraní Runnable (povětšinou se
používá anonymní implementace rozhranní). Toto řešení však neřeší komunikaci mezi nově vzniklým
vláknem a hlavním (GUI vláknem) a všeobecně je považováno za málo robustní (tj. snadno jej použijete
chybným způsobem). I ve standardní Javě je tudíž považováno za překonané.
Android proto nabízí hned několik robustnějších řešení. Pokud Vám stačí chování typu „udělej nějakou
úlohu v novém vlákně a po jejím skončení proveď (jednorázovou) obsluhu ve vlákně hlavním“, pak je
doporučeným řešením třída AsyncTask<Params, Progress, Result> (třída je generická). Objekt této třídy
zajistí vykonávání tří postupných akcí (metod) v přesně definovaném pořadí: nejdříve je vykonána
akce popsaná metodou onPreExecute a to v hlavním vlákně (může tedy přistupovat ke objektům GUI
včetně pohledů), poté je vyvolána metoda doInBackround, které je předán objekt (či pole objektů) třídy,
jež je použita na místě typového parametru Params (u nás to bude objekt representující transformaci
mezi souřadnicemi pohledu a souřadnicemi komplexní roviny). Jak je zřejmé již z názvu metody, je tato
část úlohy vykonána na pozadí ve zvláštním vlákně. Uvnitř této metody tak nelze přistupovat ke GUI
prvkům a nelze doporučit ani přístup k ostatním objektům, jejichž kód je vykonáván hlavním vláknem
(bezpečný je pouze přístup k objektům odkazovaným pouze instancí třídy AsyncTask, jež vykonává
úlohu).
Metoda doInBackround na základě vstupních parametrů vytvoří na pozadí výsledek, jehož typ je určen
třetím typovým parametrem generické třídy (označován jako Result). Tento objekt je předán na vstup
metody onPostExecute. Ta je opět vykonána v hlavním GUI vlákně. Její funkcí je změnit GUI podle
výsledného objektu (v našem případě je výsledkem bitmapa a metoda onPostExecute zajistí vykreslení
bitmapy).
Celý proces je ilustrován na následujícím obrázku:

Obrázek navíc ukazuje další možnost, kterou třída AsyncTask nabízí — úloha na pozadí může občas
vyvolávat metodu onProgressUpdate na popředí (tj. v GUI vlákně), která zajišťuje aktualizaci informa-
ce o pokroku dosaženém při vykonávání úlohy na pozadí (aby uživatel nepodlehl představě, že se nic

21

neděje). Metodě onProgressUpdate lze předat objekt, který pokrok kvantifikuje. To může být instance li-
bovolné třídy (jméno třídy je druhým tj. prostředním parametrem generické třídy AsyncTask). V našem
případě to bude reálné číslo v rozsahu [0,1] určující jaká část bitmapy je již hotova.
Bohužel v Javě nelze použít typ float resp. double jako typový parametr generické třídy, neboť to musí
být skutečná třída a tou elementární typy v Javě nejsou. Jsou totiž z důvodů efektivity representovány
jako přímé hodnoty nikoliv jako plnohodnotné objekty, které jsou z opatřeny dodatečnými informace-
mi, a z proměnných jsou pouze odkazovány (tj. jsou to na rozdíl od přímých hodnot vždy referenční
typy). Stejný problém je nutno řešit i jazyce C#, ale zde se využívá automatický převod přímé hodnoty
na objekt a zpět (tzv. boxing a unboxing), který tento rozdíl před uživatelem zcela ukrývá. V Javě je však
nutno explicite použít tzv. obalující typ Float (všimněte si rozdílné velikosti prvního písmene). Tento
typ obaluje hodnotu typu float do objektu, který lze použít i v generických konstrukcích, a jenž se ve
většině případů implicitně konvertuje na původní hodnotový typ a vice versa (tj. i v Javě je automatický
boxing a unboxing, ale není bohužel zcela transparentní).
Než přejdeme k implementaci třídy odvozené z AsyncTask, je nutno vyřešit ještě dva problémy spojené
s předáváním hodnota a vzájemnou komunikací objektů.
První problém spočívá v parametru metody na pozadí. Aby bylo možno vygenerovat bitmapu je nutno
znát obě soustavy souřadnic — jak obdélník popisující šířku a výšku pohledu na displeji tak i odpovída-
jící výřez komplexní roviny. Bohužel parametrem může být jen jediný objekt (to není zcela pravda, ale
proměnný počet parametrů nabízený Javou náš problém neřeší). Proto si vytvoříme pomocnou třídu, je-
jíž instance budou fungovat jako přepravky objekty třídy Rect (souřadnice displeje) a RectF (souřadnice
komplexní roviny).
Abychom zbytečně neexportovali tento nový typ navenek (je používán jen uvnitř pomocných metod
třídy pohledu) budeme ji definovat jako tzv. staticky vnořenou třídu (uvnitř třídy MandelbrotView).staticky

vnořená třída class MabdelbrotView {
...

static class Transformation {
public Rect dc;
public RectF mc;

public Transformation(Rect dc, RectF mc) {
this.dc = dc;
this.mc = mc;

}
}

...
}

Staticky vnořená třída nemá se svou hostitelskou třídou příliš mnoho společného. Hostitelská třída na-
bízí pouze samu sebe jako jmenný prostor (tj. jen uvnitř hostitelské třídy je vnořená třída dostupná
přímo přes svůj identifikátor, vně hostitelské třídy je nutno použít jméno kvalifikované hostitelskou
třídou tj. např. MandelbrotView.Transformation). Navíc získají instance hostitelské třídy přístup k pri-
vátním členům třídy vnořené a vice versa. To se nám hodí, neboť není nutno vytvářet gettery a settery
pro datové členy vnoření třídy, i když jsou označeny jako privátní.
Druhý problém je obdobný. Uvnitř instancí objektů naší třídy odvozené z AsyncTask potřebujeme pří-
stup k objektu aktuálního pohledu. Úloha totiž musí (ve své GUI části) nastavovat bitmapu a také si vy-
nucovat překreslení po její změně (aby se nová bitmapa vůbec objevila na displeji). Naše implementace
navíc mění čítač pokroku (= datový člen progress) a příznak běhu úlohy na pozadí (datový člen bac-
kgroundThread). Jinak řečeno instance úlohy na pozadí musí mít přístup k pohledu, který danou úlohu
vytvořil.
To lze zajistit vložením odkazu na pohled do instance třídy odvozené z AsyncTask<Transformation,
Float, Bitmap>. Protože se však jedná o odkaz na objekt jiné třídy, nelze přímo přistupovat k privátním
členům pohledu, což jsou bohužel všechny členy které hodláme nastavovat. Jejich zveřejnění či dodání
veřejných getterů a setterů není řešením, neboť nechceme aby měl přístup každý (jen a pouze objekty

22

úloh na pozadí). To lze sice vyřešit vhodnou volbou přístupových specifikátorů je to však poněkud
komplikované (v literatuře, kterou si bohužel nepamatuji, je systém přístupových práv v Javě označován
jako barokotvarý, což může být po návštěvě drážďanské gämeldegalerie zcela pochopitelné a přiléhavé
přirovnání).
Naštěstí existuje ještě jedno řešení. Odvozená třída úloh může být definována jako vnitřní třída, tj.vnitřní třída
jako vnořená třída bez specifikace static (někteří ji proto označují jako instančně vnořenou). Instance
instančně vnořené třídy mají s instancemi hostitelské třídy mnohem intimnější vztah. Každá instance
vnořené třídy totiž obsahuje (skrytý) odkaz na instanci hostitelské třídy, která ji vytvořila (je to obdoba
uzávěrů známých z funkcionálních jazyků). Uvnitř metod instancí vnořené třídy je tak možno přímo
přistupovat k datovým členům a metodám tvůrcovské instance hostitelské třídy a to přímo přes this
(jako by byly zahrnuty do přímo do instance vnořené třídy), přičemž this lze samozřejmě ve většině
kontextů vynechat.
Definice vnořené třídy odvozené z AsyncTask je poněkud delší (obsahuje totiž mimo jiné i vlastní algo-
ritmus vykreslování Mandelbrotovy množiny).

class MabdelbrotView {
...

class BitmapAsyncTask extends AsyncTask<Transformation, Float , Bitmap> {
@Override
protected void onPreExecute() {

if(actualBitmap != null)
actualBitmap.recycle();

actualBitmap = null;
backgroundThread = true;
progress = 0f;
invalidate();

}

@Override
protected Bitmap doInBackground(Transformation... params) {

return getBitmap(params[0]);
}

@Override
protected void onPostExecute(Bitmap result) {

actualBitmap = result;
backgroundThread = false;
invalidate();

}

@Override
protected void onProgressUpdate(Float... values) {

progress = values[0];
invalidate();

}

private Bitmap getBitmap(Transformation t) {
Rect dc = t.dc;
RectF mc = t.mc;
final int max_iteration = 256;
final int progressStep = dc.width() / 10;
int[] palette = new int[max_iteration+1];
float x0, y0, x, y, xtemp, xx, yy;

23

int iteration;

for(int i=0; i < max_iteration+1; i++) {
palette[i] = Color.rgb((2*i)%256,(3*i)%256, (5*i)%256);

}

Bitmap b = Bitmap.createBitmap(dc.width(),
dc.height(),

Bitmap.Config.RGB_565);
for(int dx = 0; dx < dc.width(); dx++) {

if(dx % progressStep == 0)
publishProgress((float)dx / dc.width());

for(int dy = 0; dy < dc.height(); dy++) {
x0 = mc.left + mc.width() * (dx - dc.left) / dc.width();
y0 = mc.bottom - mc.height() * (dy - dc.top) / dc.height();
xx = yy = x = y = 0.0f;
iteration = 0;

while (xx + yy < 4 && iteration < max_iteration) {
xtemp = xx - yy + x0;
y = 2*x*y + y0;
x = xtemp;
xx = x*x;
yy = y*y;
iteration++;

}
b.setPixel(dx, dy, palette[iteration]);

}
}
return b;

}
}
}

Podívejme se nejdříve na implementaci, které definují jednotlivé fáze úlohy. V metodě onPreExecute
jsou vykonávány jen pomocné úlohy. Za prvé je aktuální bitmapa zobrazovaná v pohledu nastavena na
null (tj. aktuální bitmapa není k dispozici, namísto toho je zobrazeno upozornění, že výpočet probíhá
a je nutno čekat ne jeho dokončení). Pokud už byla nějaká aktuální bitmapa definována, pak je uvolněna
paměť, kterou využívá v rámci systému (metoda Bitmap.recycle). Původní bitmapa totiž stále zůstává
v paměti, i když již na ní neodkazuje žádný odkaz a to včetně paměti ležící mimo objekt (ta je spravována
operačním systémem). Objekt bude sice nakonec odstraněn a dodatečná paměť uvolněna finalizátorem
(destruktorem), ale k tomu dojde až v okamžiku kdy není dostatek paměti na hromadě spravované
Javou a je tudíž zavolán garbage collector. K tomu může dojít až o mnoho sekund či minut později,
kdy už může být pozdě (dodatečná paměť je spravována operačním systémem nikoliv Javou). Proto je
vhodné prostředky OS uvolnit hned jak již nejsou potřeba (v C# se pro stejný účel používá návrhový
vzor založený na metodě Dispose z rozhraní IDisposable).
Metoda onPreExecute dále nastavuje příznak úlohy běžící na pozadí, aby tak mohlo být zabráněno běhu
více souběžný úloh na pozadí. I když je to v zásadě možné, může to příliš zatížit procesor a kompliko-
valo by se i zobrazení informace o průběhu. Příznak backgroundThread je povětšinou synchronizován
s odkazem na aktuální bitmapu (tj. platí, že je nastaven na true právě tehdy, když má proměnná actu-
alBitmap hodnotu null), neplatí to však při vzniku pohledu (bitmapa není k dispozici, ale žádná úloha
na pozadí neběží).
Po nastavení čítače pokroku na 0 (zatím není nic hotovo) je volána metoda MandelbrotView.invalidate
(ta patří stejně jako nastavované datové členy do odkazovaného hostitelského objektu-pohledu). Tato

24

metoda zneplatní veškerý viditelný obsah pohledu, tím že vloží požadavek na překreslení celé jeho
plochy do fronty požadavků. Po určité (povětšinou velmi krátké době) je systémem zavolána metoda
MandelbrotView.onDraw, která fyzicky zajistí překreslení pohledu (zde nakreslí upozornění na čekání
se zobrazením pokroku). Metodu pro zneplatnění pohledu můžeme bezpečně volat, neboť jsme stále
v hlavním GUI vlákně. Tím předběžné nastavení končí.
Po určité době po dokončení metody onPreExecute (kterou opět nelze určit, je však opět ve většině
případů velmi krátká) je v jiném vlákně vyvolána metoda doInBackground. Tato metoda běží paralelně
s GUI vláknem (v případě, že máte k dispozici více jader pak se může jednat o skutečný paralelismus), tj.
GUI vlákno zůstává responzivní (tj. může téměř okamžitě reagovat na požadavky uživatele a systému).
Tělo metody je velmi stručné, neboť se pouze volá pomocná metoda pro generování bitmapy (což však
může trvat i desítky sekund).
Metoda onPostExecute (ta je opět vykonána v GUI vlákně s jistým zpožděním po ukončení předchozí
metody) získává nově vytvořenou bitmapu, jíž uloží do datového členu actualBitmap (ten samozřejmě
leží v hostitelském objektu pohledu), nastaví příznak běžící úlohy na false (tj. již je možné spustit další
úlohu) a vyžádá si její překreslení zneplatněním současného obsahu pohledu (tj. po jisté době je volána
metoda MandelbrotView.onDraw).
Velmi jednoduchá je i metoda onProgressUpdate, která je volána několikrát během plnění bitmapy. Ta
pouze nastaví čítač pokroku na předanou hodnotu (ta je předána z metody getBitmap běžící na pozadí)
a zneplatní pohled. Při následném vykreslení je již zobrazena nová hodnota.
Teprve nyní se dostaneme ke kódu, který fraktál generuje do bitmapy. Většina kódu metody getBitmap
je vytvořena na základě pseudokódu převzatého z Wikipedie (kód je pouze přepsán do Javy a mírně
upraven):
For each pixel (Px, Py) on the screen, do:
{
x0 = scaled x coordinate of pixel
y0 = scaled y coordinate of pixel
x = 0.0
y = 0.0
iteration = 0
max_iteration = 1000
while (x*x + y*y < 2*2 AND iteration < max_iteration)
{
xtemp = x*x - y*y + x0
y = 2*x*y + y0
x = xtemp
iteration = iteration + 1

}
color = palette[iteration]
plot(Px, Py, color)

}

Mandelbrot set. (2013, October 6). InWikipedia, The Free Encyclopedia. Retrieved 18:30, October 6, 2013,
from http://en.wikipedia.org/w/index.php?title=Mandelbrot_set&oldid=575943730

Z tohoto důvodu uvádím jen pár poznámek. Bitmapa je vytvořena voláním statické tovární metody
Bitmap.createBitmap. Tato metoda kromě šířky a výšky bitmapy očekává formát pro uložení jednotli-
vých pixelů. Z důvodů úspory paměti je použit formát RGB_565, který pro ukládání každého používá
2 byty (toho 5 bitů pro červenou a modrou složku a 6 bitů pro složku zelenou). Velikost bitmapy totiž
může být relativně velká (při rozlišení 320x480 je to i v kompaktním formátu 300 KiB).
Podobně se šetří i při representaci reálných čísel. Na místo representace dvojitou přesností (double)
je použita přesnost jednoduchá (float). Cílem tentokrát není úspora paměti (proměnných typu float je
použito jen pár), ale urychlení výpočtu (to se projeví především v případě, že zařízení nemá vlastní FPU
a výpočty jsou emulovány pomocí celočíselné aritmetiky). Navíc je tento typ kompatibilní s representací
souřadnicového systému pomocí RectF (typ float je obecně preferovaným typem ve 2D grafice).

25

http://en.wikipedia.org/w/index.php?title=Mandelbrot_set&oldid=575943730

Všimněte si i vyvolání metody publishProgress, na úrovni cyklu přes sloupce (tj. vnějšího hlavního cyklu
programu, bitmapa se kreslí po sloupcích). Tato metoda zajistí nepřímou aktivaci metody onProgressUp-
date v GUI vlákně (je to nepřímá aktivace, metoda jen přidá požadavek do fronty požadavků hlavního
vlákna a ihned se vrátí, update se provede až v okamžiku kdy se na požadavek dostane). Aby se GUI
vlákno zbytečně nezatěžovalo, není požadavek volán v každém sloupci, ale jen po dokončení každých
přibližně 10% sloupců). Metoda přijímá a následně předává nám již známé číslo v rozsahu [0,1].
Poslední zmínku si zaslouží generování palety (tj. mapování počtu iterací na barvy). I když by bylo obec-
ně vhodné využívat předpřipravenou paletu, je z důvodů stručnosti využit jednoduchý cyklus, který
vytváří paletu spojením cyklicky se opakujících barevných složek, přičemž perioda se u jednotlivých
složek liší.
Po vytvoření vnitřní třídy implementující úlohu na pozadí už zbývá jen doplnit metodu, která vytvoří
instanci této třídy a nastartuje proces jejího vykonávání (tatometoda patří přímo tříděMondelbrotView):

private void generateNewBitmap() {
if(!backgroundThread) {

BitmapAsyncTask task = new BitmapAsyncTask();
task.execute(new Transformation(dc, mc));

}
}

Podmínka brání vícenásobnému vyvolání výpočtu na pozadí, tj. jen v případě, že neběží jiná úloha na
pozadí, dojde k vytvoření instance třídy BitmapAsyncTask a k volání metody její execute (parametrem
je přepravka se specifikací obou soustav souřadnic).
V další fázi je nutno pohled umístit do rozvržení, které popisuje vizuální rozhraní aktivita. Proto je
nutné ze správce balíčků otevřít soubor res/layout/activity_main. Objeví se rozhraní návrháře.
Návrhář rozhraní aktivit vestavěný do Android Studia není příliš intuitivní a navíc se často mění. Jed-
notlivé akce se tak mohou v různých verzích lišit (a nikoliv jen v detailech).
V zásadě je nutno provést pět kroků: za prvé vymazat pohled s textem „Hello, world“ (pokud se tam
nachází), změnit hlavní rozvržení (layout) na lineární (ten je pro začátečníka nejjednodušší).
Nyní již můžete přidat nově vytvořený pohled (je dostupný v paletě pohledů v sekci Custom & Library
Views). Přidání se provede pouhým přetažením do návrhu displeje.
Posledním krokem je odstranění výplně (paddingu) kolem pohledu. Protože se jedná o vnitřní okraje
(padding je součástí pohledu nikoliv okolního rozvržení) stačí zvolit nově přidaný pohled a v editoru
vlastností nastavit padding ve všech směrech na nula pixelů (left, top, right, bottom).
Posledním krokem je pojmenování dané instance pohledu, aby bylo možno tento pohled jednoduše
odkazovat z hlavního programu (automaticky zvolený identifikátor je zbytečně dlouhý a u složitějších
rozvržení může být matoucí). V property editoru zvolte vlastnost id nastavte ji na @+id/view (použijte
tlačítko […] vpravo, pak stačí zadat jen view, prefix @+i/, který zajistí vygenerování příslušné javov-
ského symbolu se vloží sám)
Pokud se vše povedlo měli bystě vidět následující obrázek:

26

Ještě důležitější je pohled do záložky activity_main.xml (níže pod paletou a zobrazení displeje). Ten
obsahuje návrh v textové (XML) podobě.
Měl by vypadat takto:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/LinearLayout1"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"
android:paddingBottom="0px"
android:paddingLeft="0px"
android:paddingRight="0px"
android:paddingTop="0px"
tools:context=".MainActivity" >

<cz.ujep.ki.android.fiser.MandelbrotView
android:id="@+id/view"
android:layout_width="match_parent"
android:layout_height="match_parent"/>

</LinearLayout>

Pokud se XML v podstatných detailech liší (podstatná jsou jména elementů a hodnoty atributů, nikoliv
například pořadí atributů), tak je lze přímo změnit (změna se projeví automaticky i v grafickém návrhu).
Tím máme první návrh aplikace hotový a můžeme ho přeložit a spustit v emulátoru. Pokud je vše
OK měli byste vidět nejdříve černou obrazovku s upozorněním a pomalu či rychle rostoucím čítačem
pokroku (10, 20, … 90%) a poté i samotnou Mandelbrotku.

27

3.5 Interakce: dotyky a menu
Navzdory nezpochybnitelné kráse fraktálu, však není aplikace příliš uspokojující, neboť jediné co umí,
je zobrazení statického obrázku. Žádná interakce (přepnutí do jiné aplikace např. přes domovské tlačítko
však naštěstí funguje), tím spíše animace.
Proto musíme aplikaci trochu rozšířit (ale jen trochu, nebudeme to na začátku přehánět). Protože hlav-
ním požadavkem je přibližovací zoom (abychom viděli i krásné detaily), tak vytvoříme jednoduché
rozhraní založené na dotycích. Po dotyku se objeví detail centrovaný na jeho středu a zvětšený dvakrát
v obou směrech.
Aby konkrétní pohled zachytával dotyky musíme ho registrovat jako příjemce (= listener) příslušných
událostí pomocí jeho vlastní metody setOnTouchListener. My to provedeme přímo v metodě onCreate
aktivity (tj. pohled nebude tuto možnost nabízet automaticky bez ohledu na svou domovskou aktivi-
tu). Doplněná metoda bude mít následující tvar (musí být obsažena ve třídě MainActivity v souboru
MainActivity.java, přidán je i nově zavedený datový člen):

public class MainActivity extends Activity {
private MandelbrotView mbw;

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
mbw = (MandelbrotView) findViewById(R.id.view);
if(savedInstanceState != null)

mbw.setMc((RectF)savedInstanceState.getParcelable("rect"));
mbw.setOnTouchListener(mbw);

}

V prvním řádku doplněného kódu, získáme odkaz na vložený pohled. Tento odkaz získáme pomocí
metodyActivity.findViewById, jejímž parametrem je symbolický identifikátor pohledu, který je odvozen
ze jména zadaného v návrháři (zadáno bylo jméno @+id/view, symbolická konstanta má proto tvar
R.id.view). Vrácený odkaz je typován bázovou třídou View a musí být tedy přetypován na správný typ
a až pak uložen do připraveného datového členu (prozatím by bylo možno využít i lokální proměnnou,
ale odkaz na pohled se nám brzy bude hodit i v dalších metodách).
Teprve nyní můžeme zavolat registrační metodu, která určuje že o veškerých dotycích v rámci naše-
ho jediného pohledu (neboť je adresátem) bude informován tento pohled sám (je totiž i parametrem
metody). Obecně může bát příjemcem zpráv libovolný objekt (třeba i naše aktivita).

28

Po té co vložíme tento objekt, nám IntelliJ označí (červeným podtržením a ikonkou v levém pruhu),
že v řádku je chyba. Pokud najedeme myší nad podtrženou část (nebo klikneme na ikonku), tak je
nám nabídnuto řešení chyby. Bohužel většina navržených řešení nic neřeší (např. přetypování, nebo
změna jména metody). Až téměř na konci (alespoň tak je tomu u mne) je však navrženo správné řešení
„Let MandelbrotView implement OnTouchListener“. Zvolíme toto řešení a podtržení zmizí. Nyní se však
chyba pro změnu objeví v souboru MandelbrotListener.java (v prohlížeči balíčků se u ikony souboru
objeví malá červená ikonka chyby).
Proto si zobrazíme editační okno s tímto souborem, najdeme podtržení v hlavičce třídyMandelbrotView
a pokusíme se zjistit, jak ji lze automaticky napravit. Tentokrát jsou jen dvěmožnosti, z nichž je evident-
ně správná jen jedna „Add unimplements methods“ (řešení „Make Mandelbrot abstract“ je nepoužitelné,
neboť podpůrný kód musí vytvořit instanci pohledu!).
Po volbě tohoto řešení se do třídyMandelbrotView přidá metoda onTouch se správnými parametry i ty-
pem návratové hodnoty (i když je prozatím téměř prázdná). Tento styl programování (zápis požado-
vaného dočasně neplatného kódu a až následné automatizované řešení chyb) nejen zrychlí zápis kódu,
ale zajistí, že kód je po syntaktické a typové stránce stále správný.
Obsah nově vygenerované metody pro obsluhu dotykových událostí zaměňte za následující kód:
public boolean onTouch(View v, MotionEvent event) {

if (actualBitmap == null)
return true; // aktuální bitmapa není k dispozici

int x = (int)event.getX(0);
int y = (int)event.getY(0);
float x0 = getMc().left + getMc().width() * (x - dc.left) / dc.width();
float y0 = getMc().bottom - getMc().height() * (y - dc.top) / dc.height();

float width = getMc().width() / 2.0f;
float height = getMc().height() / 2.0f;

float left = x0 - width / 2.0f;
float top = y0 - height / 2.0f;

setMc(new RectF(left, top, left + width, top + height));
generateNewBitmap();

return true;
}

Kód je relativně dlouhý, ale není složitý. Nejdříve je otestováno, zda právě není k dispozici aktuální
bitmapa (a místo fraktálu je tak vidět jen hláška o prodlení). V tomto případě se nic neděje (to brzy
napravíme).
Potom je zjištěna pozice dotyku v souřadnicích pohledu (tj. v souřadnicové soustavě representované da-
tovým členem dc). To je trochu zkomplikováno tím, že API nativně podporuje vícedotyky (multitouch).
Proto je nutné dotyky v metodě getX indexovat. My vícedotyky prozatím neřešíme a tak zvolíme pozici
prvního dotyku (s indexem 0).
Další část kódu přepočítává souřadnice pohledu na souřadnice matematické (komplexní rovinu) a defi-
nuje nový výřez (ten má střed v místě dotyku a šířku a výšku poloviční). Po vypočtení nového výřezu
je tento nastaven pomocí setteru a je aktivováno generování nové bitmapy (samozřejmě opět na poza-
dí). Obslužná metoda dotyku pak vrací true, čímž potvrzuje že dotyk obsloužila (tak to činí i v případě,
že bitmapa není zobrazena, neboť i ignorování je zde obsluhou).
Po novém spuštění by již měla aplikace reagovat na dotyky a zobrazovat i detaily Mandelbrotovy mno-
žiny.
Vše se zdá v pořádku, ale při delším používání aplikace zjistíme dva nedostatky (částečně se mohou
i prolínat):

29

1. po opuštění aplikace a opětném návratu do ní, se občas stane, že se místo původního detailu
objeví celkový pohled na množinu (tj. aplikace zapomene svůj stav).

2. při otočení zařízení do polohy na šířku (resp. naopak na výšku) během výpočtu bitmapy se po
jejím skončení zobrazí původní (neotočená bitmapa)

Nejdříve vyřešíme první problém, který není omezen jen na tuto aplikaci, neboť téměř všechny aplikace
v Androidu se musí programově postarat o uchování svého stavu.
Základní princip je jednoduchý. Pokud má být aktivita (dočasně) destruována tj. odstraněna z paměti,
pak je volána její metoda onSaveInstanceState, která se musí postarat o uložení klíčových informací
o svém stavu do jednoduché persistentní databáze, která je dostupná pomocí instance třídy Bundle.
Během tohoto procesu musí být jednotlivé údaje serializovány (převedeny do souvislého proudu bytů)serializace
tj. ukládané objekty musí být buď jednoduchého typu nebo být tzv serializovatelné (obdoba atributu
Serializable u .NET). Standardní Java nabízí podporu automatické serializace u většiny tříd, je to však
náročný proces a vyžaduje podporu kompilátoru (stejně jako v C#). Android využívá jiný, výrazně
odlehčený typ serializace. Většina klíčových tříd implementuje rozhraní Parcelable (česky: zabalitelné
do přepravního balíku), a tak sami definují metody pro postupnou serializaci a deserializaci (převod
zpět do paměti). Toto rozhraní mohou samozřejmě definovat i uživatelské třídy.

@Override
protected void onSaveInstanceState(Bundle outState) {

outState.putParcelable("rect", mbw.getMc());
}

Objekt persistentní databáze je dometody předán jako parametr. Databáze je organizovaná jako slovník,
tj. jednotlivé hodnoty jsou přístupné přes řetězcový klíč. V našem případě uložíme souřadnice výřezu
komplexní roviny pod klíčem "rect"). Třída RectF, která výřez representuje naštěstí implementuje roz-
hraní Parcelable (tj. je serializovatelná), takže nám stačí zavolat jedinou metodu pro vložení všech (čtyř)
číselných údajů — metodu putParcelable.
Obnovení údajů se provádí nejčastěji v metodě onCreate. Jen je nutno ošetřit situaci, kdy je tato metoda
volána poprvé po instalaci. V tomto případě není databáze s uloženými stavy prozatím k dispozici (a my
zobrazíme globální pohled na množinu).

if(savedInstanceState != null)
mbw.setMc((RectF)savedInstanceState.getParcelable("rect"));

Tento fragment kódu musí být umístěn na konci metody onCreate (resp. přesněji kdekoliv za řádkou,
v níž získáme odkaz na pohled pomocí findByViewId) a jeho význam je zřejmý. Pokud persistentní
databáze (odkazovaná pomocí parametru savedInstanceState) již existuje (tj. není null), pak je z ní získán
(deserializací) objekt representující matematické souřadnice (musí být explicitně přetypován na RectF),
jenž je následně použit pro nastavení výřezu v pohledu s Mandelbrotovou množinou.
Nyní přistoupíme k problému, jež lze obecně popsat jako ignorování požadavku na překreslení mapy
(např. při otočení) v okamžiku, kdy běží výpočet jako reakce na jiný předcházející požadavek např.
dotyk. To je zřejmý důsledek skutečnosti, že naše implementace podporuje jen jeden výpočet na po-
zadí, který je navíc nepřerušitelný. Nezbývá nám tedy prozatím nic jiného, něž požadavek ignorovat
(viz následující klíčový kód metody MandelbrotView.generateNewBitmap):

private void generateNewBitmap() {
if(!backgroundThread) {

BitmapAsyncTask task = new BitmapAsyncTask();
task.execute(new Transformation(dc, mc));

}
}

Protože podpora více souběžných požadavků není v zásadě možná (zatížení systému, problém se zobra-
zením průběhu), je jediným řešením implementace předčasného přerušení úlohy na pozadí (úloha není
dokončena a může být ihned nahrazena jinou).

30

Nejdříve je nutné předeslat, že i když lze v zásadě vlákno přerušit i nedobrovolně (analogie zabití uni-
xovského procesu) nelze to ve většině případů doporučit. Nelze totiž zaručit, že k přerušení dojede
v okamžiku, kdy to nebude mít negativní vliv na další chod programu (tj. když jsou uvolněny všechny
prostředky, nebo alespoň správně naalokovány a všechny sdílené datové struktury jsou v konzistent-
ním stavu). Nelze dokonce ani zaručit, že nedobrovolně ukončované vlákno již (nebo naopak ještě)
neběží.
Proto je vždy vhodnější volit dobrovolné ukončení, kdy úloha na pozadí cyklicky kontroluje požado-
vaný stav vlákna, a je-li označeno jako přerušené (přesněji je ve stavu plánovaného přerušení), pak se
vlákno dobrovolně ukončí. Tento přístup podporuje i třídy AsyncTask<> (a tím samozřejmě i všechny
od ní odvozené třídy včetně naší BitmapAsyncTask).
Pokud na instanci této třídy zavolána metoda cancel, pak mohou nastat dvě eventuality: pokud vlák-
no ještě běží, pak se nastaví příznak plánovaného ukončení a čeká se na dobrovolné dokončení úlohy.
Předpokládá se, že úloha na pozadí průběžně testuje stav objektuAsyncTask pomocí metody isCanceled.
Pokud tato metoda vrátí true, pak se úloha (a tím i vlákno) samo ukončí (může však uvolnit prostřed-
ky a musí zajistit konzistentní stav dat). Po ukončení úlohy se namísto metody onPostExecute zavolá
metoda onCancelled (v hlavním vlákně!). Až poté se metoda cancel ukončí a vrátí hodnotu true. Méně
pravděpodobná (ale nikoliv nemožná) je i druhá eventualita. Úloha na pozadí již skončila a tak ji již
nelze přerušit. Metoda cancel vrátí v tomto případě false.
V našem případě tak stačí jen mírně modifikovat metodu pro získání bitmapy (BitmapAsyncTask.-
getBitmap) a předefinovat metodu onCanceled.
U metody getBitmap stačí je dodat test příznaku přerušení. Tento test by se měl průběžně opakovat, tj.
měl by být umístěn uvnitř cyklu. V našem případě jsou však využity tři úrovně vnoření cyklů (vnější
je přes sloupce bitmapy, prostřední přes jednotlivé pixely a vnitřní přes iteruje přes jednotlivé prvky
řady, u nichž je zjišťováno zda jsou omezené či nikoliv).
Vložení na počátek vnějšího cyklu může vést k relativně dlouhé prodlevě (v řádu desetin sekundy),
vložení do nejvnitřnějšího může algoritmus zpomalit (i když je testování příznaku velmi rychlé), Zvolil
jsem proto zlatou střední cestu a test vložil na začátek cyklu prostředního (tj. per pixel).

Bitmap b = Bitmap.createBitmap(dc.width(), dc.height(), Bitmap.Config.RGB_565);
for(int dx = 0; dx < dc.width(); dx++) { //cyklus přes sloupce

if(dx % progressStep == 0)
publishProgress((float)dx / dc.width());
for(int dy = 0; dy < dc.height(); dy++) { //cyklus přes řádky

if(isCancelled()) return b;

Implementace metody BitmapAsyncTask.onCancel je jednoduchá (je analogická metodě onPostExecute)

@Override
protected void onCancelled(Bitmap result) {

if(result != null)
result.recycle();

actualBitmap = null;
backgroundThread = false;

}

Pokud je již bitmapa alokována, pak je uvolněna její paměť spravovaná systémem. Aktuální bitmapa
není samozřejmě nastavena (stará je zahozena a nová není dokončena) a příznak běhu úlohy na pozadí
je shozen (= nastaven na false).
Poslední změna se pak týká metody MandelbrotView.generateNewBitmap (tj. metody startující asyn-
chronní úlohu):

private void generateNewBitmap() {
if(backgroundThread) {

task.cancel(false);
}

31

task = new BitmapAsyncTask();
task.execute(new Transformation(dc, mc));

}

Hlavní formální změnou je změna lokální proměnné task na datový člen pohledu. Je to nutné, ne-
boť podpora předčasného ukončení vyžaduje přístup k objektu úlohy i po jejím nastartování (objekt
je vytvořen v jednom volání metody generateBitmap a ukončován v jiném). Parametr false u metody
BitmapAsyncTask.cancel určuje, že nebude učiněn pokus nedobrovolně ukončit vlákno s úlohou.
Tím dospíváme do dalšího rovnovážného stavu naší aplikace. Bohužel předčasné ukončování se jen
obtížně ladí (otočení nemusí mít vždy ten správný požadovaný efekt). Proto dodáme ještě jednu akci,
která navíc citelně chybí: možnost opětovného přechodu na globální pohled.
Tuto akci zpřístupníme pomocí hlavníhomenu, jež je v Androidu dosažitelné pomocí stisku příslušného
ovládacího tlačítka (ať již fyzického či softwarového).
Prvním krokem je doplnění (či změna) XML souboru definující obsah hlavníhomenu res/menu/main.xml.
Výsledkem by mělo být menu s jednou položkou:

<menu xmlns:android="http://schemas.android.com/apk/res/android" >
<item

android:id="@+id/globalView"
android:showAsAction="always"
android:icon="@drawable/ic_action_refresh"
android:title="@string/globalView"/>

</menu>

Atribut id stejně jako v případě deklarativních rozvržení obsahuje identifikátor, jenž bude dostupný
i v kódu (pod jménem R.id.globalView).
Atribut showAsAction určuje, zda bude akce dostupná i pomocí akční lišty (na horní straně dipleje vedle
názvu aplikace). To se v tomto případě hodí (je to hlavní akce), a proto tento způsob povolíme (hodnota
always zajistí, že tam akce bude umístěna stále).
Akce je však v liště representována ikonou, kterou musíme dodat. Navíc by to měla být ikona, jejíž styl
odpovídá doporučením uvedeným na stránkách Android Iconography (http://developer.android.
com/design/style/iconography.html). Pokud navíc nejste zkušený návrhář ikon musíte se spoko-
jit se standardní nabídkou akčně-lištových ikon, která je na těchto stránkách k dispozici. Po delším
hledání jsem zvolil ikonku refresh (úplné jméno ic_action_refresh).

Poslední atribut (title) by měl obsahovat název položky menu. Protože se však zobrazuje navenek, měl
by být zadán nepřímo. Zde je pouze odkaz na příslušný soubor deklarací (může existovat i více variant,
nejen podle jazyka, je i např. podle rozlišení displej). V našem (jednoduchém) případě je soubor uložen
jako res/values/strings. Změnte jeho obsah tak, aby obsahoval následující XML dokument (nezměněn
zůstal název aplikace):

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="app_name">Mandelbrotka</string>
<string name="globalView">Global View</string>

</resources>

Teď už zbývá jen jediný krok k dokončení aplikace — je potřeba doplnit metodu pro ošetření aktivace
položky menu. Metoda (předefinovaná) se jmenuje onOptionsItemSelected a musí být umístěna ve třídě
aktivity (MainActivity v souboru MainActivity.java).
Struktura metody je jednoduchá a neměnná. Jádrem je konstrukce switch, která zpracování větví podle
identifikátoru zvolené položky menu (switch je zde akceptovatelný, neboť počet položek by měl být
omezen na maximálně 5-8). V případě naší položky (R.id.globalView) je obsluha jednoduchá. Pohled je

32

http://developer.android.com/design/style/iconography.html
http://developer.android.com/design/style/iconography.html

znovu inicializován a je spuštěno generování nové bitmapy. To se však neděje přímým voláním pří-
slušných metod (init, generateBitmap), které by měly zůstat neveřejné, ale použitím nově vytvořené
vysokoúrovňové metody MandlebrotView.globalView:

public void globalView() {
init();
generateNewBitmap();

}

Nyní můžete menu vyzkoušet, stejně jako přerušení generování na pozadí (položku menu zvolíte v oka-
mžiku, kdy je vidět černá obrazovka s upozorněním).

33

OTÁZKY
1. Z jakého důvodu je v Androidu použit víceúrovňový životní cyklus aktivit?
2. Podle jakých hlavních kategorií se člení soubory zdrojů?
3. Co je návrhový vzor Observer? Jakou roli hraje v Javě a Androidu?
4. Jaký je rozdíl mezi (staticky) vnořenou třídou a vnitřní třídou?
5. Proč je přerušení asynchronního vlákna pomocí metody cancel označováno jako dobrovolné?
6. Co je to akční lišta?
7. Jak je aplikaci běžně signalizováno otočení displeje?

OTÁZKY K ZAMYŠLENÍ
1. Jaký je v Androidu vztah mezi aplikací a procesem?
2. Jaké metody musí definovat serializovatelný objekt (Parcelable)?
3. Jakémaximální přiblížení umožňuje použití typu float? (vycházejte ze šířkymantisy tohoto typu).

ÚKOLY
1. Přidejte do aplikace i možnost zmenšení. Použijte novou položku menu.
2. Zobrazte v obraze i základní informace o aktuálním výřezu. (důležité je aby byly vždy vidět)

34

4 Internetové služby a persitentní úlo-
žiště dat : Převodník měn

CÍLE KAPITOLY
Ukázková aplikace převodník měn ilustruje následující mechanismy programování v Androidu:

• spolupráce několika interních aktivit (zde omezená na dvě aktivity) pomocí tzv. úmyslů (intent)
• návrh aktivity za pomocí rozvržení využívajících hotových pohledů
• využití služeb (service) pro činnosti na pozadí (tj. neinteragující přímo s uživatelem)
• parsování XML dokumentu získaného z Internetu (což je část mechanismu využití tzv. WWW
služeb)

• využití jednoduché relační databáze (o jediné tabulce) pro persistentní ukládání dat
Tyto dovednosti lze využít v širokém spektru aplikací, neboť tvoří skutečné jádro aplikací v Androidu.

4.1 Zadání

Hlavní funkce aplikace je zobrazení tabulky kursů získaných z XML dokumentu České národní banky
na následující adrese:
http://www.cnb.cz/cs/financni_trhy/devizovy_trh/kurzy_devizoveho_trhu/denni_kurz.xml

Aplikace by navíc měla poskytovat jednoduchý kalkulátor pro převod mezi českou korunou a libovol-
nou měnou, jejíž kurs je v daném dokumentu uveden.
Speciálním požadavkem je uchování kursů v lokální databázi, tj. podpora off-line zobrazení a přepočtů.
Tato funkce může být klíčová, neboť poplatky za roamingová data mohou být téměř astronomické.

4.2 Návrh
Na převodníku měn si ukážeme další typický rys aplikací v Androidu — modularitu. Aplikace v An-
droidu se skládá z několika modulů, které spolu nesdílejí žádné společné objekty a komunikují spolu
pomocí protokolu, který se podobá protokolu webových aplikací, neboť požadavek je zakódován do
URL.
Navíc, zašleme-li v tomto protokolu požadavek (v názvosloví Androidu úmysl – intent), pak nemusí
být předem znám modul, který požadavek splní. Úmysl totiž neadresuje přímo modul, ale definuje
obecně službu, která má být provedena (například zavoláno číslo, získány dat o kontaktu, zobrazen
soubor, přehránímultimédií, apod.) Je na systému (ve spolupráci s uživatelem), jakýmodul danou službu
obstará.
Zajímavým rysem této volné vazby mezi příjemcem a službou, je to, že modul nemusí ležet ve stejné
aplikaci, ale může být poskytován jinou aplikací. Tím se de facto stírají hranice mezi aplikacemi a musí
být zaveden zcela nový pojem – např. řetězec uživatelské interakce. Tento řetězec prochází mezi apli-
kacemi, využívaje jejich GUI moduly (aktivity), procesy na pozadí (služby) a zdroje dat ať již lokální

35

http://www.cnb.cz/cs/financni_trhy/devizovy_trh/kurzy_devizoveho_trhu/denni_kurz.xml

tak internetové (poskytovatelé obsahu). Navíc může reagovat pomocí tzv. příjemců veřejného vysílání
(broadcast receiver) na události systému i ostatních aplikací.
Pokud již máte zkušenosti s praktickým využíváním Androidu, tak můžete být poněkud překvapeni,
neboť hranicemezi aplikacemi nejsou ani ve světě Androidu zdaleka tak výrazně setřeny. Ve skutečnosti
je výše uvedený model spíše ideálem, který je v některých oblastech relativně široce reflektován (např.
propojení kontaktů, zpráv a kalendářů), jinde nepřesahuje možnosti desktopu (přehrávání multimédií)
a v některých oblastech se vůbec neprojevuje (neexistují zde žádné jasně definované a standardizované
služby, např. u textových editorů nebo skriptování).
Podobná tendence se projevuje i v na úrovni kódu, kdy jsou úmysly používány i pro účely, které s pů-
vodní sítí služeb souvisejí jen zcela okrajově.

1. úmysly se používají pro vzájemné volání (fixně určených) modulů v rámci jedné aplikace. Ty-
pickým využitím je přepínání mezi aktivitami (obrazovkami). Moduly však zůstávají relativně
striktně odděleny, neboť nesdílejí žádné společné objekty.

2. úmysly se používají i pro implementaci distribuovaného objektového systému. Vazba mezi mo-
duly, je již velmi těsná včetně zdánlivého přímého sdílení dat.

Tento modulární pohled na aplikaci zohledníme i v našem návrhu. Aplikace bude obsahovat čtyři mo-
duly:

1. aktivitu zobrazující tabulku kursů (ListingActivity). Tato aktivita je hlavní aktivitou aplikace (tj.
je zobrazena při prvním spuštění aplikace)

2. pomocná aktivita kalkulátorů kursů (zvolená měna vzhledem ke naší koruně české) — Calcula-
torActivity

3. služba pro aktualizaci kursů (UpdateService)
4. poskytovatel kursů (CurrencyContentProvider), který ostatním nabízí (abstraktně pojatou) data-

bázi kursů. Pro interní uložení bude používat SQL databázi.
Vztah mezi jednotlivými moduly lze nejlépe ilustrovat obrázkem:

Všimněte si, že centrálním modulem z pohledu toku a zpracování dat je poskytovatel obsahu a Lis-
tingActivity z hlediska řízení. Jedinýmmodulem, který je navržen tak, aby mohl být používán i z jiných
aplikací je poskytovatel kursové databáze. Je to však pouze potenciál, neboť neposkytuje žádné stan-
dardizované a veřejně známé rozhraní.

4.3 Vytvoření resp. import projektu
Při vytvoření projektu zadejte název MConverter a hlavní aktivitu pojmenujte ListingActivity. Během
úvodního průvodce není potřeba aktivovat žádná speciální nastavení.
Soubor manifestu by měl mít následující tvar:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="cz.ujep.ki.android.fiser"
android:versionCode="1"

36

android:versionName="1.0" >

<uses-sdk
android:minSdkVersion="10"
android:targetSdkVersion="18" />

<uses-permission android:name="android.permission.INTERNET" />

<application
android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme" >
<activity

android:name="cz.ujep.ki.android.fiser.ListingActivity"
android:label="@string/app_name" >
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

</application>
</manifest>

Jediným dodatečně přidaným prvkem (je možno ho přidat přímo v XML editoru) je nastavení požado-
vaných práv. Android z bezpečnostních důvodů vyžaduje, aby aplikace explicitně specifikovala práva
k prostředkům, které mohou být zneužity. Uživatel pak při instalaci musí určit, zda tato práva poskyt-
ne či nikoliv (otázkou je, zda to není přecenění běžného uživatele). Naše aplikace potřebuje jen jediné
explicitní právo — přístup k internetu (identifikátor android.permission.INTERNET).
Na rozdíl od prvního projektu nezůstane soubor manifestu beze změny a budeme ho průběžně rozšiřo-
vat, neboť v něm musí být uvedena informace o každém dodatečném modulu (aktivitě, službě, apod.)
Kód projektu MConverter je již o poznání složitější a rozsáhlejší. Proto může být vhodným přístupem
i import již hotového projektu a jeho prozkoumání a následné rozšiřování.

4.4 ContentsProvider — přístup k databázi
poskytovatel
obsahu Poskytovatel obsahuPoskytovatel obsahu je modul, který poskytuje ostatním modulům (resp. i ostat-

ním aplikacím) data. Navenek se chová jako datová služba standardu REST, uvnitř používá datová
úložiště (běžně je to databáze SQLite)
V naší aplikaci je poskytovatel obsahu centrálním modulem a proto začneme od něj. Prvním krokem
je vytvoření třídy CurrencyContentProvider (kontextové menu projektu New | Class). Klíčovým nasta-
vením je bázová třída, musí jí být android.content.ContentProvider. Dále si můžete nechat vygenerovat
kostru abstraktních metod.
Druhým krokem je volba tzv. autority. V zásadě je to jedinečný identifikátor identifikujícího poskyto-
vatele a jeho protokol, který nabízí (jaké data lze získat, jak je identifikovat a jaký budou mít formát).
Autorita má stejný formát jako javovské balíčky, tj. měla by to být opačně zapsaná DNS doména (kterou
bychom měli vlastnit, či být její správci). My použijeme cz.ujep.ki.android.fiser.providers.currencies.
Tuto autoritu musíme společně s poskytovatelem zaregistrovat v souboru manifestu:

<provider
android:name="cz.ujep.ki.android.fiser.CurrencyContentProvider"
android:authorities="cz.ujep.ki.android.fiser.providers.currencies" >

</provider>

37

Nyní již můžeme přistoupit k implementaci. Základním rozhodnutím je volba úložiště. I když Android
nabízí několik persistentních úložišť, je tím nejpružnějším a nejpoužívanějším SQL databáze vytvořená
a spravovaná pomocí knihovny SQLite. Pokud tuto knihovnu znáte, máte drobnou konkurenční výhodu,
ale v zásadě postačuje znalost základní a tudíž téměř univerzální SQL syntaxe.
Pro přístup ke databázi se nepoužívá přímý SQL kód, ale pomocné třídy, které jej obalují do rozhraní
vyšší úrovně. Bohužel tím získáme vyšší robustnost za cenu dosti nepřehledného a rozvláčného kódu.
Navíc SQL není zcela ukryto a musíte jej proto alespoň trochu znát.
Další pomocnou třídou, která se v poskytovatelích obsahu běžně vyskytuje je UriMatcher. Jeho funk-
ce je dána vnějším rozhraním provideru, které imituje API webových služby typu REST (http://en.
wikipedia.org/wiki/Representational_state_transfer). Tyto služby používají URL pro identifi-
kaci zdrojů data (tabulek) i jednotlivých položek a to i v několika úrovních adresace. Typický REST
požadavek může vypadat např. takto:
http://geodb.test/staty (HTTP metoda GET)
= vrať celou tabulku států (v dohodnutém formátu)
http://geodb.test/staty/cz (HTTP metoda PUT)
= změň či přepiš položku tabulky států (cz je zde primární klíč)
Poskytovatel proto musí interně překládat podobně formovaná URL na symbolické identifikátory da-
tabází a případné klíče.
Definice poskytovatele začíná definicemi různých symbolických konstant (používání pojmenovaných
konstant namísto literálů je v Androidu velmi rozšířené):

public class CurrencyContentProvider extends ContentProvider {
private final static String DB_NAME = "currencies.db";
private final static int DB_VERSION = 1;
private final static String TABLE_NAME = "currencies";

Nejdříve jsou definovány konstanty, které určují interně používané identifikátory. Jméno databáze je
jméno souboru, který je vytvořen v souborovém systému lokálního úložiště. Databáze jsou viditelné
pouze v rámci dané aplikace (tj. jméno nemusí být globálně unikátní). Číslování verzí se týká změn
struktury databáze (přidání tabulek, změna sloupců). Pokud dojde k takovéto změně je nutné toto číslo
zvýšit (za chvíli uvidíme proč).

public final static String AUTHORITY
= "cz.ujep.ki.android.fiser.providers.currencies";

public final static String CONTENT_URI
= "content://" + AUTHORITY + "/" + TABLE_NAME;

public final static String CONTENT_TYPE
= "vnd.android.cursor.dir/vnd.cz.ujep.ki.android.fiser.currencies";

Další skupinu tvoří veřejné identifikátory. Je to za prvé identifikace autority (musí být stejná jako
v manifestu!). Použití usnadňuje i URI, které bude použito z vnějšku pro přístup k poskytovateli (je
to obdoba REST URL). Obsahuje schéma (content:), autoritu (vnější identifikátor poskytovatele) a ces-
tu k tabulce (poskytujeme jen jednu tabulku). Poslední řetězcová konstanta, je MIME typ výsledků
dotazu. Protože výsledkem není přenositelný obecný formát (XML nebo JSON), ale binární kursor zá-
vislý na struktuře naší tabulky, je nutno vytvořit nový unikátní identifikátor, jehož základním typem
je vnd.android.cursor.dir.

public final static String _ID = "_id";
public final static String CODE = "code";
public final static String NAME = "name";
public final static String AMOUNT = "amount";
public final static String RATE = "rate";
public final static String COUNTRY = "country";

38

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer

Další dávka konstant definuje jména sloupců databáze. Jména mohou být libovolná (samozřejmě SQL
kompatibilní). Je však vhodné doplnit číselný primární klíč s fixním identifikátorem _id a to navzdory
tomu, že tabulka již sloupec použitelný jako primární klíč obsahuje (jinak si výrazně zkomplikujete
život, neboť mnohé třídy tento klíč implicitně předpokládají).

private static final int CURRENCY_MATCH = 1;

Poslední (opět soukromá) konstanta je využívána instancí třídy UriMatcher (bude representovat glo-
bální dotaz na tabulkou currency).
Kód dále pokračuje definicemi pomocných objektů a jejich inicializací, která se provádí v metodě on-
Create(), jejíž funkce se podobá obdobně metodě v aktivitách. Je volána při vytvoření poskytovatele,
což se děje v okamžiku, kdy je dotazován a přitom ještě (nebo už) neexistuje.

private OpenHelper dbHelper;
private UriMatcher matcher;

@Override
public boolean onCreate() {

dbHelper = new DatabaseHelper(getContext());
matcher = new UriMatcher(UriMatcher.NO_MATCH);
matcher.addURI(AUTHORITY, TABLE_NAME, CURRENCY_MATCH);

return true;
}

OpenHelper je třída, která zapouzdřuje vytváření databáze (musí být vytvořena pro každou databázi
zvlášt). V konstruktoru očekává tzv. kontext, který (zjednodušeně) určuje společný kontext aplikace
nebo její části. Ve většině případů jej získáme voláním metody getContext (zde je to metoda zděděná
ze třídy ContentProvider), nebo je přímo identická s modulem (např. u hlavní aktivity). URIMatcher
je inicializován mapováním, které mapuje URI s danou autoritou a cestou na symbolickou konstantu
(číslo) CURRENCY_MATCH.
Dále je nutno definovat třídu DataBaseHelper, což je specializace třídy SQLiteOpenHelper pro naši da-
tabázi. Pro jednoduchost jí vytvoříme jako (neveřejnou) statickou vnořenou třídu:

private static class OpenHelper extends SQLiteOpenHelper {
OpenHelper(Context context) {

super(context, DB_NAME, null, DB_VERSION);
}

@Override
public void onCreate(SQLiteDatabase db) {

String command =
"CREATE TABLE " + TABLE_NAME + " (" +
_ID + " INTEGER PRIMARY KEY AUTOINCREMENT, " +
CODE + " VARCHAR(3), " +
NAME + " VARCHAR(32), " +
COUNTRY + " VARCHAR(32), " +
AMOUNT + " REAL, " +
RATE + " REAL " + ");";
db.execSQL(command);

}

@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {

db.execSQL("DROP TABLE IF EXISTS " + TABLE_NAME);
onCreate(db);

}

39

}

Funkce je jasná. Předefinovaná metoda onCreate vytváří novou tabulku (obecně všechny tabulky da-
tabáze). K tomu využívá SQL příkaz CREATE TABLE, který je zkonstruován za použití symbolických
konstant. Při určování domén nemusíte být příliš striktní, neboť SQLite poskytuje jen několik málo
typů, které jsou navíc často zcela zaměnitelné (např. VARCHAR(n) je totéž co CHAR(N) a TEXT).
Podobně je konstruována metoda, která se volá v případě, kdy se zvýší číslo verze předané konstrukto-
ru bázové třídy. Použité řešení není sofistikované, ale pro jednoduché databáze akceptovatelné. Stará
databáze je smazána a nová je vytvořena metodou onCreate.
Následující sekce pokračuje v předefinování metod třídy poskytovatele obsahu (CurrencyContentProvi-
der). Tato část využívá opakovaně několik idiomů a v zásadě se nemění (jen se komplikuje při použití
databáze s více tabulkami).

@Override
public String getType(Uri uri) {

switch(matcher.match(uri)) {
case CURRENCY_MATCH:

return CONTENT_TYPE;
default:

throw new IllegalArgumentException("Unknown URI " + uri);
}

}

Metoda mapující dotazovací URI na MIME type získaných položek. Zde vrátíme jednoznačně defino-
vaný podtyp typu vnd.android.cursor.dir (máme pro něj již symbolickou konstantu). Hlavně se však
všimněte, jak je URI požadavku mapováno na symbolickou konstantu (CURRENCY_MATCH) pomocí
instance UriMatcheru . Konstanta je následně mapována na obslužný kód pomocí konstrukce switch.

@Override
public int delete(Uri uri, String selection, String[] selectionArgs) {
SQLiteDatabase db = dbHelper.getWritableDatabase();
int count;
switch (matcher.match(uri)) {

case CURRENCY_MATCH:
count = db.delete(TABLE_NAME, selection, selectionArgs);
break;

default:
throw new IllegalArgumentException("Unknown URI " + uri);

}
getContext().getContentResolver().notifyChange(uri, null);
return count;
}

Funkce provádějící požadavek na výmaz. Struktura všech výkonných metod je podobná. Za prvé zís-
káme objekt, který zapouzdřuje vstupy a výstupy databáze. Výmaz databázi mění a proto se pokusíme
získat objekt, který umožňuje i zápis do databáze (getWritableDatabase). Potom zkontrolujeme dotazo-
vací URI. Odpovídá-li vzoru (tj. matcher URI rozezná a vrátí symbol odpovídající naší jediné tabulce),
pak provedení delegujeme na objekt zapouzdřující databázi. Metoda vrací počet pozměněných řádek,
které si uložíme a nakonec je vrátíme jako návratovou hodnotu naší funkce. Před tím však musíme do
systému notifikovat, co se změnilo, aby mohli být informováni objekty, které se zaregistrovali u pozo-
rovatele (návrhový vzor observer, neboť poskytovatel slouží jako model v architektuře MVC tj. Model-
-View-Controller).

@Override
public Uri insert(Uri uri, ContentValues values) {

SQLiteDatabase db = dbHelper.getWritableDatabase();

40

long id;
switch (matcher.match(uri)) {

case CURRENCY_MATCH:
id = db.insert(TABLE_NAME, CODE, values);
break;

default:
throw new IllegalArgumentException("Unknown URI " + uri);

}

if (id > 0) {
Uri itemUri = ContentUris.withAppendedId(uri, id);
getContext().getContentResolver().notifyChange(uri, null);
return itemUri;

}

throw new SQLException("Failed to insert row into " + uri);
}

Implementace příkazu INSERT má stejnou strukturu jako výše. Jsou zde jen dvě změny — metoda no-
tifikuje a vrací URI rozšířené o primární klíč nového záznamu. Nově přidávaný řádek je předán jako
objekt třídy ContentValues. V zásadě je to slovník mapující názvy sloupců na hodnoty (ještě se s ním
setkáme).

@Override
public Cursor query(Uri uri, String[] projection, String selection,

String[] selectionArgs, String sortOrder) {

SQLiteQueryBuilder qb = new SQLiteQueryBuilder();

switch (matcher.match(uri)) {
case CURRENCY_MATCH:

qb.setTables(TABLE_NAME);
break;

default:
throw new IllegalArgumentException("Unknown URI " + uri);

}

SQLiteDatabase db = dbHelper.getReadableDatabase();
Cursor c = qb.query(db, projection, selection, selectionArgs,

null, null, sortOrder);

c.setNotificationUri(getContext().getContentResolver(), uri);
return c;
}

Metoda realizující příkaz SELECT. Tento příkaz je o něco složitější, takže je nutné nejdříve jej sesta-
vit z jednotlivých částí (jsou předány jako parametry a odpovídají jednotlivým částem příkazu např.
projection je zobrazení definované bezprostředně za SELECT, selection a selectionArgs popisují filtr uve-
dený v části WHERE). Metoda vrací tzv. kursor, což je de facto iterátor přes virtuální tabulku získanou
dotazem (ke kursoru se ještě vrátíme). Všimněte si také, že databáze je jen pro čtení.

@Override
public int update(Uri uri, ContentValues values, String selection,

String[] selectionArgs) {
SQLiteDatabase db = dbHelper.getWritableDatabase();

int count;

41

switch (matcher.match(uri)) {
case CURRENCY_MATCH:

count = db.update(TABLE_NAME, values, selection, selectionArgs);
break;

default:
throw new IllegalArgumentException("Unknown URI " + uri);

}

getContext().getContentResolver().notifyChange(uri, null);
return count;
}

}

Zde již není nic nového, metoda update je obdobou metody delete, kde nová hodnota je předána jako
u metody insert.

4.5 UpdateService — čtení dat na pozadí
Služby jsou moduly, které vykonávají činnosti, které nejsou přímo svázány s grafickým uživatelským
prostředím. Běžně se označují jako činnosti na pozadí, což však vede k určitému zmatení mezi vlákny
a službami.
služba (service)

• je modul tj. je oddělen od zbytku aplikace (především od aktivit) a může být tudíž aktivován
i z jiných aplikací. S trochou zjednodušení je to vlastně aktivita bez možnosti využití displeje
a s trochu jiným režimem životního cyklu.

• je standardně vykonávána ve stejném vlákně jako aktivita. Tj. činnost, kterou provádí by měla
být buď krátká (maximálně desetiny sekundy), nebo asynchronní (spuštěná skutečně na pozadí
jako je např. přehrávání multimédií). Pokud není splněna ani jedna možnost, je možno využít
explicitně vytvořeného vlákna (stejně jako u aktivit).

• službamůže být buď jednorázová (po zavolání se téměř bezprostředně ukončí), nebo trvalá. Pokud
je trvalá musí zajistit svou persistenci (stejně jako jako aktivita), či svůj trvalý nepřerušený běh
(v tomto případě se musí zaregistrovat do lišty událostí)

vlákno
• není modulem, ale pouhou součástí určitého modulu, pro něhož vykonává asynchronní činnost
(běžící paralelně s hlavním vláknem). Hlavní vlákno tak může neprodleně reagovat na požadavky
GUI nebo systému. Vlákno může se zbytkem modulu sdílet data tj. objekty (jen je nutno zajistit
synchronizaci přístupu ke sdíleným objektům).

V naší aplikaci služba jen přečte a rozparsuje XML dokument a údaje z něho vloží do výše implemento-
vaného poskytovatele obsahu. Je to tedy jednorázová služba. Musí však být implementována pomocí
vláken, neboť přenos a parsování dat z internetu může trvat poněkud déle (i vteřiny). Android navíc
nenabízí asynchronní verzi XML parseru (jako je tomu v .NET).
Avšak ani v tomto případě nepoužijeme vlákno přímo, neboť i zde existuje pohodlnější řešení na vyšší
úrovni. Pokud nám stačí scénář, kdy po obdržení požadavku (intentu) stačí vytvořit vlákno a předat
mu požadavek ke zpracování (a načekat na jeho dokončení a výsledky); pak lze namísto třídy andro-
id.app.Service použít specializovanější bázovou třídu android.app.IntentService).
Hlavní metodou této třídy je onHandleIntent. Nejdříve si však připravíme a inicializujeme pomocné
datové členy:

public class UpdateService extends IntentService {
private static final String uri =

"http://www.cnb.cz/cs/financni_trhy/devizovy_trh/kurzy_devizoveho_trhu/denni_kurz.xml";

42

Handler guiHandler;

public UpdateService() {
super("UpdateService");

}

@Override
public void onCreate() {

guiHandler = new Handler();
super.onCreate();

}

Řetězcová konstanta obsahuje URL stránky, z níž budeme načítat data (stejně jako všude v Androi-
du, i zde platí: nepoužívat literály, ale symbolické konstanty). Zajímavější je však druhý datový člen
(guiHandler), který bude po inicializaci obsahovat tzv. handler. Handler uchovává informace o vlákně
a jeho událostní smyčce a umožňuje ostatním vláknům tuto smyčku používat (tj. volat kód, který se
provede ve smyčce jiného vlákna). V našem případě bude tímto vláknem hlavní (GUI) vlákno. Proto
musíme zajistit, aby byl objekt handleru vytvořen v hlavním GUI vlákně (handler se vždy vztahuje ke
vláknu, v němž byl vytvořen).
I když by bylomožno handler inicializovat již při definici nebo v konstruktoru objektu služby (konstruk-
tor i inicializátor se vykoná v hlavním vlákně), je tato inicializace přesunuta až do metody onCreate,
která se volá při každém vytvoření objektu služby (stejně jako u aktivity nebo poskytovatele obsahu).
I tato metoda se volá v hlavním vlákně (a zcela v souladu s Androidím přístupem, je vše vykonáno, až
při poslední možné příležitosti).
Poté služba se služba zablokuje a čeká do okamžiku, kdy jiný modul vyjádří úmysl ji využít (tj. aktivuje
službu a předá ji objekt třídy Intent). V tomto okamžiku se vytvoří nové vlákno, které začne vykonávat
metodu onHandleIntent (aktivující intent je předán jako parametr této metody).

@Override
protected void onHandleIntent(Intent intent) {

URL url;
InputStream input;

try {
url = new URL(uri);
input = url.openConnection().getInputStream();

} catch (MalformedURLException e) {
Log.e("Update service", "Malformed URL");
return;

} catch (IOException e) {
//TODO: toast for users
Log.e("Update service", "IO Exception");
return;

}

Na začátku metody se pokusíme otevřít proud, ze kterého budeme číst XML dokument. Využijeme
k tomu instanci třídy URL. To se přirozeně nemusí povést a proto musíme ošetřit výjimky (na rozdíl od
C# je v Javě nutné výjimky, alespoň formálně ošetřit). Prozatím je jediným ošetřením výpis chybového
hlášení do logu (pomocí metody Log.e, kde e symbolizuje error). To je adekvátní v případě výjimky
třídy MalformedURLException, neboť ta může vzniknout jen programátorovou chybou (URL je uvedeno
přímo v programu), je však zcela nedostatečná u chyby třídy IOException, kde uživatel nebude nijak
informován (prostě se jen nic neprovede a nevypíše se zdravice (toast) se statistikou, viz dále).
Jádrem metody je přečtení všech elementů XML dokumentů a uložení získaných dat o měně do posky-
tovatele obsahu. I když je operace algoritmicky triviální, je její zápis poněkud rozvleklý:

43

XmlPullParser parser = Xml.newPullParser();
ContentResolver resolver = getContentResolver();
int updated = 0;
int inserted = 0;

Nejdříve si musíme připravit zdroj, což je tzv. pull (vytahovací) XML parser. Tento parser čte jednotlivé
XML konstrukce (tagy, text mezi tagy), a to na požádání. Tento přístup je běžný v .NET nebyl však
podporován standardní Javou (ta používá SAX server, který sice pracuje se stejnými konstrukcemi,
sám však vyvolává jednotlivé metody, tj. typu push (podstrkovací)).
Objekt třídy Resolver nám umožňuje získat přístup k manažeru poskytovatelů (konkrétní poskytovatel
je určen pomocí URI). Číselné proměnné jsou jednoduché čítače (abychom mohli poskytnout na závěr
nějakou statistiku).

try {
parser.setInput(input, null);
int eventType = parser.getEventType(); //načtení první konstrukce

while(eventType != XmlPullParser.END_DOCUMENT) { //dokud není konec dokumentu
if(eventType == XmlPullParser.START_TAG) && //pro každý element "řádek"

parser.getName().equals("radek")) {
//vytvoříme kontejner pro db. řád
ContentValues val = new ContentValues();
//a vložíme do něj jednotlivé sloupce
putAttrString(parser, "kod", val, CurrencyContentProvider.CODE);
putAttrString(parser, "mena", val, CurrencyContentProvider.NAME);
putAttrInt(parser, "mnozstvi", val, CurrencyContentProvider.AMOUNT);
putAttrDouble(parser, "kurz", val, CurrencyContentProvider.RATE);
putAttrString(parser, "zeme", val, CurrencyContentProvider.COUNTRY);
//pokusíme se ho updatovat
Uri contentUri = Uri.parse(CurrencyContentProvider.CONTENT_URI);
int cols = resolver.update(

contentUri, val, CurrencyContentProvider.CODE + "=?",
new String[]{val.getAsString(CurrencyContentProvider.CODE)});

if(cols == 0) { //nepodaří−li se to, tak jej vložíme (insert)
resolver.insert(contentUri, val);
inserted++;

}
else {

updated++;
}

}
}

eventType = parser.next(); //přejdeme na další XML konstrukci
} //konec cyklu přes prvky XML

} catch (XmlPullParserException e) {
Log.e("Update service", "Malformed XML");

return;
} catch (IOException e) {

Log.e("Update service", "Malformed XML");
return;

}

Základem je cyklus přes všechny elementy s názvem řádek (přesněji přes jejich počáteční tagy). U kaž-
dého tagu získáme jeho atributy a vložíme je do kontejneru řádku (= instance třídy ContentValues).
Pro to využijeme pomocných metod putAttr… (jejich definici uvidíme za chvíli). Metodám předáváme

44

identifikaci zdroje (parser, který odkazuje na počáteční tag a jméno atributu) a identifikací cíle (kon-
tejner a jméno sloupce). Metody provedou navíc přetypování a kontrolu typu (proto existují tři odlišné
metody).
Po naplnění kontejneru řádku se jej pokusíme nejdříve použít pro aktualizaci, neboť to je běžnější
(řádek se povětšinou vkládá jen jednou při prvotním spuštění, poté se jen aktualizuje). Všimněte se jak
je konstruován požadavek na databázi (ten volá metodu update poskytovatele). Klíčem je konstrukce
části WHERE SQL příkazu UPDATE. Jeden parametr určuje levou stranu porovnávání, druhý (v podobě
identifikátor slovníku) identifikátor měny získaný z kontejneru řádku (tj. vygeneruje např. SQL ve tvaru
UPDATE…WHERE code = "USD"). Pokud se aktualizace řádku nepodaří (řádek ještě neexistuje a metoda
vrací 0 pozměněných řádků), je použito vložení (to je jednodušší, neboť není nutno inicializovat řádek).
V obou případech se inkrementují příslušné čítače.
Po ukončení celkové aktualizace vypíšeme uživateli krátkou zprávu s počtem přidaných a aktualizo-
vaných řádků. Pro to využijeme tzv. zdravici (angl. toast), což je malý obdélník s textem zobrazovaný
uprostřed displeje. Jinou možnost prakticky prakticky nemáme, neboť služba nemá přístup k displeji
a může dokonce nastat situaci, že v okamžiku výpisu upozornění používá displej jiná zcela nesouvi-
sející aplikace (druhou, složitější, možností je výpis do horní lišty událostí). Výpis trochu komplikuje
skutečnost, že se nenacházíme v hlavním GUI vlákně. Pokud bychom zdravici vypsali z tohoto vlákna,
pak by se sice zobrazila, ale nikdy by nezmizela (nezbude nic jiného než restartování systému). Naštěstí
máme handler vytvořený v hlavním okně takže stačí, použít jeho metodu post, který kód pro výpis vloží
do událostní smyčky hlavního vlákna.
Kód samotný je vložen jako předefinovaná metoda instance anonymní třídy implementující rozhraní
Runnable. Tento syntaktický prostředek typický pro Javu vypadá jako volání konstruktoru na rozhraní,
které je však doplněno tělem, v němž jsou definovány všechny metody rozhraní (lze to použít i s abs-
traktní třídou). Překladač Javy vytvoří podle definice novou bezejmennou třídu, jejíž objekt poté zkon-
struuje. Je to poněkud rozvleklejší obdoba anonymních delegátů a lambda funkcí jazyka C# (naštěstí
v IntelliJ stačí napsat jen new a jméno rozhraní a editor doplní prázdné definici potřebných metod).

final String toastText = "Done. Inserted: " + inserted + ". Updated: " + updated;

guiHandler.post(new Runnable() { //toast from non−GUI thread
@Override
public void run() {
Toast toast = Toast.makeText(getBaseContext(), toastText, Toast.LENGTH_SHORT);
toast.show();

}}); //konec volání metody post
} //konec definice metody onHandleIntent

Z implementace služby už chybí jen definice pomocnýchmetod pro čtení atributů, přetypování a uložení
do kontejneru řádků (instance ContentValues).

private static void putAttrString(XmlPullParser parser, String attrName,
ContentValues cv, String colName) {

cv.put(colName, parser.getAttributeValue("", attrName));
}

private static void putAttrInt(XmlPullParser parser, String attrName,
ContentValues cv, String colName) {

cv.put(colName, Integer.parseInt(parser.getAttributeValue("", attrName)));
}

private static void putAttrDouble(XmlPullParser parser, String attrName,
ContentValues cv, String colName) {

String svalue = parser.getAttributeValue("", attrName);
if (svalue.contains(",")) { //the source uses "," as decimal point

svalue = svalue.replace(',', '.');

45

}
cv.put(colName, Double.parseDouble(svalue));

}
} //konec třídy update service

Třídu služby nakonec zaregistrujeme v manifestu.

<service android:name="cz.ujep.ki.android.fiser.UpdateService" ></service>

4.6 Hlavní aktivita — seznamový pohled
Kód hlavní aktivity není příliš rozsáhlý využívá však velkéhomnožství idiomů, které již částečně známe
avšak s mnohými se však ještě musíme seznámit:

public class ListingActivity extends Activity implements OnItemClickListener {
private Cursor mc;

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
mc = getDataFromProvider();

SimpleCursorAdapter adapter = new SimpleCursorAdapter(
this,
R.layout.item,
mc,
new String[]{ CurrencyContentProvider.CODE,

CurrencyContentProvider.NAME,
CurrencyContentProvider.AMOUNT,
CurrencyContentProvider.RATE},

new int[]{R.id.itemCode,R.id.itemName,R.id.itemAmount, R.id.itemRate});
ListView v = (ListView)findViewById(R.id.currencyView);
v.setAdapter(adapter);
v.setOnItemClickListener(this);
}

Začátekmetody onCreate je zcela klasický—nastavení rozvržení. Toto rozvržení je specifikováno pomo-
cí souboru res/layout/activity_main.xml a je zcela triviální (celý displej pod lištami je vyplněn pohledem
třídy ListView)

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".ListingActivity" >

<ListView
android:id="@+id/currencyView"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true" >

</ListView>
</RelativeLayout>

46

Druhým krokem je vyplnění seznamu daty od poskytovatele. Nejdříve získáme kursor (použita je po-
mocná metoda definovaná později, získání kursoru není totiž zcela triviální). Hlavním krokem je však
vytvoření adaptéru, který sváže kursor s vizuálním návrhem jednotlivých řádků. Adaptéry jsou dal-
ším klíčovým návrhovým vzorem Androidu a spolu se zobrazovačem (zde je to ListView) realizují část
V iew a Controller architektury MVC. I když je použitý adaptér označen jako jednoduchý (instance
SimpleCursorAdapter), tak jeho konstruktor vyžaduje relativně dost parametrů:

1. kontext (zde je kontextem samotný objekt aktivity)
2. odkaz na deklarativní definici rozvržení řádků tabulky (viz dále)
3. kursor, který bude zobrazen
4. projekce tj. pole jmen těch sloupců kursoru, která budou zobrazeny
5. pole jmen identifikátorů, použitých v návrhu rozvržení pro podpohledy (typicky textová návěští).

Podpohled, jehož identifikátor je uveden na n-tém místě, zobrazí text z n-tého sloupce kursoru
(v pořadí uvedením v předchozím seznamu).

Zde použité rozvržení je deklarováno v souboru res/layout/item.xml a obsahuje čtyři textová návěští
v jednom horizontálně uspořádaném řádku (text návěští se nikde nepoužije).
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="horizontal" > <!−− horizontální uspořádání −−>

<TextView
android:id="@+id/itemName"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:text="mena"
android:textStyle="bold" />

<TextView
android:id="@+id/itemCode"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:text="kod"
android:textColor="#AA0000" /> <!−−text kódu měny je červený−−>

<TextView
android:id="@+id/itemAmount"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:text="mnozstvi" />

<TextView
android:id="@+id/itemRate"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:text="kurz" />

</LinearLayout>

Po vytvoření adaptéru, stačí adaptér zaregistrovat u seznamového pohledu (setAdapter). Poslední řádek
určuje, že události volby jednotlivé položky dotekem bude obsluhovat naše aktivita (tím, že zavolá

47

aktivitu kalkulátoru).
Pomocná metoda, získávající kursor je po logické stránce triviální, z jednotlivých částí je zkonstruován
příkaz select a ten je aplikován na poskytovateli, jež je učen pomocí URI. Je provedena projekce, která
vrací všechny sloupce (včetně umělého primárního klíče) a položky jsou setříděny vzestupně podle
kódu měny.

private Cursor getDataFromProvider() {
// run query
Uri uri = Uri.parse(CurrencyContentProvider.CONTENT_URI);
String[] projection = new String[] {

CurrencyContentProvider._ID,
CurrencyContentProvider.CODE,
CurrencyContentProvider.NAME,
CurrencyContentProvider.AMOUNT,
CurrencyContentProvider.RATE,
CurrencyContentProvider.COUNTRY

};
String selection = null;
String[] selectionArgs = null;
String sortOrder = CurrencyContentProvider.CODE + " ASC";

return managedQuery(uri, projection, selection, selectionArgs, sortOrder);
}

Jednotlivé části dotazu SELECT jsou použity v metodě Activity.managedQuery, který vrací tzv. řízený
dotaz, to znamená, že životní cyklus dotazu je řízen životním cyklem aktivity (jinak řečeno dotaz bude
automaticky uvolněn v okamžiku, kdy už nebude potřeba). Tento přístup není zcela košer (nemůžeme
přesněji řídit kursor, ani to není obecný přístup), v nových verzích je dokonce označen za zastaralý. Je
však velmi jednoduchý a použitelný i ve starších verzích (do API 10 včetně).
Další část kódu hlavní aktivity ošetřuje menu, které obsahuje jen jednu položku — žádost o updatování.

@Override
public boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.activity_main, menu);
return true;

}

@Override
public boolean onMenuItemSelected(int featureId, MenuItem item) {

switch(item.getItemId()) {
case R.id.menu_update:

Intent intent = new Intent(this, UpdateService.class);
startService(intent);

}
return super.onMenuItemSelected(featureId, item);

Kód by měl být zřejmý, po vyvolání menu je vytvořen požadavek (intent) na službu, která je identifi-
kována jménem třídy, jejíž instance službu vykoná (je to tedy fixní vazba na konkrétní implementaci
služby). Zápis UpdateService.class vrací objekt, který z hlediska reflexe representuje danou třídu. Intent
je následně použit jako parametr metody startService.
Poslednímetodou třídy hlavní aktivity (ListingsActivity) je obsluha volby jedné z položek seznamu. Tato
metoda musí být implementována, neboť třída přislíbila implementaci rozhraní OnItemClickListener
a její instance samu sebe registrovala jako obsluhu (listener).

@Override
public void onItemClick(AdapterView<?> parent, View view, int position, long id)

48

{
mc.moveToPosition(position);
Bundle bundle = new Bundle();
bundle.putString("CODE",

mc.getString(mc.getColumnIndex(CurrencyContentProvider.CODE)));

bundle.putString("NAME",
mc.getString(mc.getColumnIndex(CurrencyContentProvider.NAME)));

bundle.putDouble("AMOUNT",
mc.getDouble(mc.getColumnIndex(CurrencyContentProvider.AMOUNT)));

bundle.putDouble("RATE",
mc.getDouble(mc.getColumnIndex(CurrencyContentProvider.RATE)));

bundle.putString("COUNTRY",
mc.getString(mc.getColumnIndex(CurrencyContentProvider.COUNTRY)));

Intent intent = new Intent(this, Calculator.class);
intent.putExtras(bundle);
startActivity(intent);

}

Po vyvolání události získá obslužná rutina relativně velké množství údajů. My však používáme jen
index zvolené položky (= řádku s údaji o jedné měně). V první části kódu posuneme ukazatel kurzoru
na zvolenou položku. Pak se kursoru dotazujeme na jednotlivé sloupce (indexem je číslo sloupce, které
získáme z jeho jména voláním metody Cursor.getColumnIndex, kód by neměl být samozřejmě závislý
na pořadí sloupců v kursoru) a jejich hodnoty vkládáme do objektu třídy Bundle. Bundle je jak již víme
jednoduchý slovník, který mapuje hodnoty na (serializované) objekty.
Po převzetí všech údajů o měně nastartujeme novou aktivitu. Parametrem je opět úmysl (intent), ke
kterému je však tentokrát přibalen objekt s dodatečnými parametry — naplněná instance třídy Bundle.
Tento mechanismus lze obecně používat k předání dodatečných parametrů nově startované aktivitě či
službě.
Tím se dostáváme k poslední třídě — aktivitě CalculatorActivity.

4.7 CalculatorActivity — aktivní formulář
CalculatorActivity je aktivita, která se podobá běžným formulářům či dialogovým oknům známým
z desktopových graficky orientovaných rozhraní.
Formulář by měl být aktivní (proto kalkulátor), tj. změna obnosu v jedné měně se hned projeví v obnosu
měny druhé (tj. křížem). Navíc budeme podporovat přibližné nastavení transakčních poplaků, které se
nejčastěji projevují v nastavení méně výhodného kursu pro prodej či koupi (střední kurs ČNB nikde
nedostanete).
Protože tato aktivita obsahuje více pohledů, je její návrh v návrháři poněkud složitější. Můj návrh má
vzhled zobrazený na následujícím obrázku (XML zápis je již příliš dlouhý). Jedná se však o vnoření
vertikální lineární rozložení obsahující dvě rozložení horizontální (s popiskem a a editačním řádkem)
a rozbalovacího seznamu (spinner, výběr z několika variant po rozbalení). Všimněte si především iden-
tifikátorů u jednotlivých pohledů (vpravo v osnově).

49

Kód aktivity začíná klíčovou metodou onCreate, která je však již o něco delší (přestože používá několik
pomocných metod):

public class Calculator extends Activity implements OnItemSelectedListener {
EditText fcAmount;
EditText homeAmount;
TextView fcCode;
Spinner tax;
TextView fullName;
private double rate;
private double taxrate;

Datové členy slouží primárně k uchování odkazů na jednotlivé dílčí pohledy (jejich jméno je shodné
se identifikátorem pohledu). Proměnná obsahuje rate obsahuje střední kurs, proměnná texrate kurs
odvozený ze středního kursu (poplatek za výměnu vyjádřený jako procento částky).

Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_calculator);
fcAmount = (EditText)findViewById(R.id.fcAmount);
homeAmount = (EditText)findViewById(R.id.homeAmount);
fcCode = (TextView)findViewById(R.id.fcCode);
tax = (Spinner)findViewById(R.id.tax);

Zatím je to zcela klasické nastavení rozvržení a získání odkazů na jednotlivé pohledy.

Intent intent = getIntent();
Bundle b = intent.getExtras();

Poté se získá úmysl, který aktivitu spustil a je získán přiložený balík parametrů.

fullName.setText(b.getString("NAME") + " (" + b.getString("COUNTRY") + ")");
fcCode.setText(b.getString("CODE") + ": ");
fcAmount.setText("1");

Zde jsou nastaveny základní informační pohledy. Jméno měny spolu se státem, kód měny (druhou je
vždy koruna) a počet jednotek měny (na začátku je to vždy 1 jednotka)

50

ArrayAdapter<CharSequence> adapter =
ArrayAdapter.createFromResource(this,
R.array.taxes,
android.R.layout.simple_spinner_item);

adapter.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
tax.setAdapter(adapter);
tax.setOnItemSelectedListener(this);

Nastavení rozvinovacího seznamu (spinneru). Seznam textových hodnot je získán z XML souboru res/-
value/string.xml, a který má následující tvar (zkráceno).

<string-array name="taxes">
<item>0%</item>
<item>2%</item>
...

</string-array>

Stejně jako u ListView , je nutno nejdříve vytvořit adaptér spojující seznam (odkazovaný identifiká-
torem zdroje) a rozložení jednotlivého řádku. V tomto případě je však řádek jednoduchý, a tak lze
použít vestavěný zdroj (layout), který je odkazován identifikátorem android.R.layout.simple_spinner_-
item (identifikátory vestavěných zdrojů začínají prefixem android.R a nikoliv jen R). Podobně je použit
i standardní rozvinovací tlačítko (zdroj android.R.layout.simple_spinner_dropdown_item). Následně je
adaptér registrován.
Aktivita se také registruje jako příjemce událostí volby položky při použití rozvinovacího seznamu (aby
mohla reagovat na změnu sazby poplatku). Musí proto implementovat rozhraní OnItemSelectedListener.

rate = b.getDouble("RATE") / b.getDouble("AMOUNT");
taxrate = rate * (1.0 + parseTax((String)(tax.getSelectedItem())));

Následuje výpočet obou kursů. Procentuální hodnota poplatku je přečtena z rozvinovacího seznamu,
což vyžaduje trochu pomocného kódu, který je umístěn v metodě parseTax (viz dále).

refresh(fcAmount.getText().toString(), homeAmount, taxrate);

Toto je volání klíčové pomocnémetody, která zde inicializuje hodnotu editační řádky obnosu domovské
měny (CZK) podle obnosu měny zahraniční (první parametr) za použití předaného kursu (s poplatkem).

fcAmount.addTextChangedListener(new TextWatcher() {
@Override
public void onTextChanged(CharSequence s, int start, int before, int count) {}

@Override
public void beforeTextChanged(CharSequence s, int start, int count, int after) {}

@Override
public void afterTextChanged(Editable s) {

if(fcAmount.hasFocus()) {
refresh(s.toString(), homeAmount, taxrate);

}
}});

Následuje definice obsluhy změn editačního pole cizí změny. Ta je tak jednoduchá, že je použita ano-
nymní implementace rozhraní TextWatcher. Implementace musí definovat tři metody, ale jen jedna není
prázdná. Metoda afterTextChanged je voláno po provedení editace a její funkce je zřejmá. Musí znovu
vypočíst obnos domácí měny, aby odpovídala změněnému vstupu. Všimněte si testu, zda má hlídaný
vstupní řádek zaměření (focus). Pokud tomu tak není, tak byl změněn programově (opačnou rutinou při
změně obnosu v domácí měně), což by vedlo k nekonečné rekurzi (změna obnosu v CZK mění obnos
v zahraniční měně, ta zase mění obnos v domácí, atd.).

51

homeAmount.addTextChangedListener(new TextWatcher() {
@Override
public void onTextChanged(CharSequence s, int start, int before, int count) {}

@Override
public void beforeTextChanged(CharSequence s, int start, int count, int after) {}

@Override
public void afterTextChanged(Editable s) {

if(homeAmount.hasFocus())
refresh(s.toString(), fcAmount, 1.0/taxrate);

}});
} //konec metody onCreate

To je totéž v opačném gardu. Změna obnosu v domácí měně si vynutí změnu obnosu měny zahraniční.
Metoda refresh má prohozené odkazy na editační pole a využívá převracenou hodnotu kurzu.
Nyní už nám zbývá již jen pár metod (včetně výše použitých pomocných):

private static double parseTax(String s) {
return Double.parseDouble(s.substring(0, s.length() - 1)) / 100.0;

}

Pomocná metoda parseTax převádí řádek rozvinovacího seznamu na odpovídající číslo. Odstraňuje po-
slední znak (to je procento, to není příliš robustní, ale programátor si to může ohlídat), převádí na číslo
typu double a dělí stem.

private static void refresh(String amount, EditText target, double rate) {
double origAmount;

if (amount.equals(""))
origAmount = 0.0;

else {
NumberFormat format = NumberFormat.getInstance(Locale.getDefault());
Number number;
try {

number = format.parse(amount);
origAmount = number.doubleValue();

} catch (ParseException e) {origAmount = Double.parseDouble(amount);}
}
double targetAmount = origAmount * rate;

target.setText(String.format("%.2f", targetAmount));
}

Nejsložitější pomocná metoda. V zásadě se jedná o pouhý výpočet cílového obnosu podle předaného
kursu (předposlední řádek) a jeho nastavení v editačním řádku. Vše však komplikuje konverze zdrojo-
vého údaje, která musí zohlednit:

1. možnost prázdného vstupního řádku (ten je pak chápán jako nulový). Chybný formát není po-
třeba kontrolovat, neboť editační řádky mají definován typ vstupu (inputType) na "decimal", tj.
žádnou jinou hodnotu než číslo nelze vložit (editační řádky s běžnými vstupními poli jsou k dis-
pozici již v toolboxu).

2. nutnost ošetření národních nastavení (vstupní číslo je vždy v národním nastavení). Navíc to uka-
zuje další cestu jak přetypovat řetězec (a navíc ukazuje, že v Javě existuje nadtřída všech číselných
tříd, na rozdíl od .NET).

@Override
public void onItemSelected(AdapterView<?> parent, View view, int position, long id) {

52

taxrate = rate * (1.0 + parseTax((String)parent.getItemAtPosition(position)));
if(fcAmount.hasFocus())

refresh(fcAmount.getText().toString(), homeAmount, taxrate);
if(homeAmount.hasFocus())

refresh(homeAmount.getText().toString(), fcAmount, 1.0 / taxrate);
}

Metoda implementující rozhraní OnItemSelectedListener, která je volána při volbě jiné hodnoty na roz-
vinovacím seznamu (tj. změně úrovně kursovního poplatku). Kód je zřejmý, vypočítá se nový opravený
kurs a zjistí se jaký editační řádek má zaměření. Tento řádek se nezmění, naopak se stane zdrojem pro
změnu obnosu ve druhé měně.
Rozhraní OnItemSelectedListener vyžaduje i definici metody, která je volána v případě, že není zvolena
žádná položka s rozvinovacího seznamu. To u nás nemůže nastat (doufám), ale v každém případě musí
být tato metoda definována, i když jako prázdná.

@Override
public void onNothingSelected(AdapterView<?> arg0) {}

} //konec definice třídy CalculatorActivity

Tím máme hotovu implementaci aktivity kalkulátoru a celého projektu. Zbývá jen dodat aktivitu do
souboru manifestu:

<activity
android:name="cz.ujep.ki.android.fiser.Calculator"
android:label="@string/title_activity_calculator" > </activity>

Včetně řetězce ve zdroji řetězců (res/value/string.xml):

<string name="title_activity_calculator">Calculator</string>

Pro kontrolu si ukažme vzhled hlavní aktivity.

a na grafické rozhraní kalkulátoru.

53

54

OTÁZKY
1. Jaký je v Androidu vztah mezi službou a vláknem?
2. Jaké rozhraní nabízí navenek poskytovatel obsahu?
3. Jakou roli hraje verzování datového úložiště?
4. Jakou funkci má (datový) adaptér?
5. K čemu slouží handler?

OTÁZKY K ZAMYŠLENÍ
1. Jaké vestavěné poskytovatele obsahu Android obsahuje?
2. Jaké prostředky pro informování uživatele o běhu služby lze využít kromě zdravice (toastu)?
3. Jaký je rozdíl mezi PULL a PUSH parserem u XML?
4. Kde je uložena databáze spravovaná poskytovatelem obsahu?

55

5 Geolokace

ODKAZY NA LITERATURU
ALLEN, Grant. Android 4: průvodce programováním mobilních aplikací. 1. vyd. Brno: Computer Press,
2013. Kapitoly 39-40 (527-548).

OTÁZKY
1. Jaký rozsah mají souřadnice longitude, latitude a altitude?
2. Jaký je rozdíl mezi COARSE_LOCATION a FINE_LOCATION?
3. Co je POI?

OTÁZKY K ZAMYŠLENÍ
1. Jaké metody geolokace Android používá? Uveďte jejich výhody a nevýhody?
2. Jaké dílčí služby nabízí Google API?

56

6 Sensory

ODKAZY NA LITERATURU
Android Developers. Sensors Overview.
Dostupné na http://developer.android.com/guide/topics/sensors/sensors_overview.html
Android Developers. Motion Sensors
Dostupné na http://developer.android.com/guide/topics/sensors/sensors_motion.html
Android Developers. Environment Sensors.
Dostupné na http://developer.android.com/guide/topics/sensors/sensors_motion.html

OTÁZKY
1. Jaké základní typy a druhy senzorů existují?
2. Jaké základní třídy existují?
3. Jak se získávají data se senzorů?
4. Popište prostorovou soustavu využívanou senzory?
5. K čemu je gyroskop?
6. Co je lineární akcelerometr?

OTÁZKY K ZAMYŠLENÍ
1. Co jsou virtuální senzory? Jakou mají funkci?
2. Co je rosný bod? Jak se počítá?

57

http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://developer.android.com/guide/topics/sensors/sensors_motion.html
http://developer.android.com/guide/topics/sensors/sensors_motion.html

	Úvodní slovo
	Android z pohledu programátora
	Jak lze v Androidu programovat
	Java a Android

	Vývojové prostředí Android Studio
	Instalace
	Vytvoření nové aplikace (projektu)
	Spuštění

	Základní struktura programu a 2D grafika: Mandelbrotka
	Mandelbrotova množina
	Aktivita — jádro Androidí aplikace
	Vytvoření projektu a jeho počáteční struktura
	Vytvoření třídy pohledu (view)
	Interakce: dotyky a menu

	Internetové služby a persitentní úložiště dat : Převodník měn
	Zadání
	Návrh
	Vytvoření resp. import projektu
	ContentsProvider — přístup k databázi
	UpdateService — čtení dat na pozadí
	Hlavní aktivita — seznamový pohled
	CalculatorActivity — aktivní formulář

	Geolokace
	Sensory

