UNIVERZITA J. E. PURKYNE V USTI NAD LABEM
Prirodovédecka fakulta

Programovani pro mobilni platformy

KI/PMP

Jiri Fiser

o

Usti nad Labem 2020

Kurz: Programovani pro mobilni platformy

Obor: Aplikovana informatika
Klic¢ova slova: programovani, Android
Anotace: Kurs je zaméfen na praktické programovani pro mobilni platformy (mobil-

ni telefony, tablety), pficemz pozornost je vénovana typickym rystm téch-
to platforem — prodlouzZeny Zivotni cyklus aplikace, sandboxing, dynamicté;j-
$§1 GUI a integrace se specifickymi hardwarovymi a softwarovymi sluzbami.
Konkrétni platforma bude volena podle aktualnich pozadavka (uplatnéni na
pracovnim trhu, dostupnost hardwaru). V ramci kursu budou vytvareny apli-
kace stfedniho rozsahu ukazujici klicové aspekty zvolené platformy.

Jazykova korektura nebyla provedena, za jazykovou stranku odpovida autor.

© Katedra informatiky, PfF, UJEP v Usti nad Labem, 2016

Autor: Jiri Fiser

Obsah

Uvodni slovo

Android z pohledu programatora

1.1 JakIze v Androidu programovat L.
1.2 JavaaAndroid

Vyvojové prostfedi Android Studio

21 Instalace
2.2 Vytvofeni nové aplikace (projektu). L.
23 Spusténi

Zakladni struktura programu a 2D grafika: Mandelbrotka

3.1 Mandelbrotovamnozina o Lo
3.2 Aktivita — jadro Androidi aplikace.o Lo L
3.3 Vytvofeni projektu a jeho pocate¢ni struktura
3.4 Vytvofeni tfidy pohledu (view) oL
3.5 Interakce:dotykyamenu L.

Internetové sluzby a persitentni tlozisté dat : Pfevodnik mén

41 Zadani
42 Navrh e
43 Vytvofeni resp. import projektu oo Lo L
4.4 ContentsProvider — pfistup k databazi
4.5 UpdateService — ¢tenidatnapozadi.
4.6 Hlavni aktivita — seznamovy pohled, ...
4.7 CalculatorActivity — aktivni formulaf
Geolokace

Sensory

[o8)

12

14
14
15
16
17
28

35
35
35
36
37
42
46
49

56

57

kli¢ovy pojem

Uvodni slovo

Vystupni znalosti

Absolvent kursu je pfipraven navrhovat a implementovat stfedné slozité aplikace pro Android s vyu-
Zitim nékterych hardwarovych a softwarovych sluzeb tableti a mobilnich telefoni.

Seminarni ukol

Seminarnim tkolem je vytvoreni aplikace pro mobilni platformu Android.
Aplikace musi spliovat tyto minimalni pozadavky:
« alespon dvé aktivity
+ sluzba na pozadi
« pouziti alesponi jednoho z klicovych témat: persistentni ulozisté, ptistup k webové sluzbé, geolo-
kace, vyuziti sensorti (kombinace je samoziejmé také mozna)
Vystupem seminarniho tikolu je komentovany zdrojovy kéd a UML tfidni diagram uzivatelskych tfid.
Priklady seminarnich dkol z minulych let:
« jednoduchy simulator prazského orloje
« rozhrani ke webové sluzbé univerzitniho systému STAG

« activity logger (vyuziti senzoru zrychleni)

Klicové pojmy

Pojmy uvedené na levém okraji textu (a v textu zvyraznéné tucné) jsou tzv. klicové pojmy. Jejich sprav-
né a plné pochopeni je nezbytné pro dalsi studium. Je samoziejmou soucasti zkousek (a to i zkousek
navazujicich pfedmétl resp. statni zavérecné) a jejich znalost se predpoklada i v ramci obhajoby semi-
narni prace.

Vétsinu z nich miZete najit v doporucené literatufe a jsou popsany i v anglické Wikipedii (anglicky
preklad je uveden, s vyjimkou termind, kde je zfejmy). V oblasti informatiky jsou ¢lanky anglické Wi-
kipedii (ve vétsiné pfipadt) velmi kvalitni, s rozsahem pfesahujicim popis uvedeny v opoie a tak mohou
byt vyuzity k dalsimu zpfesnéni prohloubeni znalosti. Navic obsahuji odkazy na dal$i hodnotné zdroje.

1 Android z pohledu programatora

CILE KAPITOLY

Kapitola popisuje (ve stru¢nosti) rizné moznosti vytvareni aplikaci na platformé Android (nékteré alter-
nativni pfistupy byste mohli i vyzkouset). Hlavnim cilem je nicméné stru¢ny uvod do procesu vytvareni
nejbéznéjsich nativnich aplikaci — vyuziti Javy a standardniho API Androidu (SDK).

1.1 Jak lze v Androidu programovat

Android je moderni a komplexni opera¢ni systém, ktery nabizi nékolik moznosti tvorby aplikaci pro-
stfednictvim raznych programovacich jazykt a platforem, a to na riznych urovnich abstrakce

« aplikace pro webové prohlizece (HTML 5 skriptovani na strané klienta). Tyto aplikace jsou pfe-
nositelné i na jiné mobilni platformy ¢i dokonce na platformy desktopové. Diky specializovanym
knihovnam, jako je napfiklad PhoneGap mohou mit tyto aplikace pfistup ke specializovanému
hardwaru (kamera, akcelerometr, GPS) a mohou byt 1épe integrovany do infrastruktury ope-
ratniho systému (notifikace, sitovy pfistup, kontakty, souborovy pfistup). Klicova je i podpora
limitovaného GUI s podporou dotykového vstupu (napi. jQuery Mobile). Resenim je pouze tzv.
rooting Androidu (tj. obejiti bezpe¢nostniho mechanismu, tim Ze je dovolen superuzivatelsky
pristup) a doi

« pouziti obecnych vysokodroviiovych skriptovacich jazyka (Python, Ruby, apod.). Tyto jazyky
nabizeji své rozsahlé univerzalni knihovny, aby vsak byly vyuzitelné pro tvorbu plnohodnotnych
aplikaci musi opét nabizet alespon ¢asteCnou integraci do infrastruktury OS (véetné podpory
specializovaného hardwaru). Vyhodou je i (pokud moZno pfenositelni) GUI knihovna s podporou
moderniho pfistupu ke tvorbé GUI aplikaci. Ur¢ité zkuSenosti mam predevsim s portem Pythonu
(QPython) a knihovnou Kivy.

« programovani nativnich aplikaci s vyuZitim Javy a standardniho API Androidu (Android SDK).
Valné vétsina aplikaci pro Android je naprogramovana timto zpusobem. Javovsky kod pro An-
droid vyuziva relativné vysokou troven abstrakce a podporuje plnou integraci do infrastruktury
Androidu, véetné spoluprace s ostatnimi aplikacemi. Je také jako jediny plné podporovan firmou
Google, tvlircem a spravcem Androidu. To mimo jiné znamena, Ze zajistuje vysokou miru kom-
patibility s rdznymi hardwarovymi platformami. Na druhou stranu je Java relativné rozvlacny
jazyk a v Androidu je tento rys jesté vyraznéjsi.

« na stejné urovni abstrakce jsou i nékteré prenositelné platformy tfetich stran, které pfimo vy-
uzivaji Android API. Pfikladem je knihovna Xamarin (vyuZivajici jazyk C# a preklada¢ Mono)
a Qt.

o pro vytvareni kodu, ktery vyzaduje pfimy pristup k hardwaru resp. efektivnéjsi vyuziti paméti
lze vyuzit Android NDK (jazyky C resp. C++). Timto zpusobem jsou vSak implementovany jen
casti aplikaci (napt. fyzikalni vypocty, apod.). Pfistup ke GUI je na této Grovni vyrazné omezen.

« terminalové orientované unixovské aplikace (CLI) nelze v Androidu nativné pouzivat (pfestoze
Android vyuziva jadro Linuxu). Android v8ak vyuziva zcela jiny model béhu aplikaci (pfedevsim
bezpecnostni) a neposkytuje implicitné textovy shell a ¢etné standardni knihovny jazyka C. Re-
Senim je pouze tzv. rooting Androidu (tj. obejiti bezpe¢nostniho mechanismu, tim Ze je dovolen

superuzivatelsky pfistup) a doinstalovani potfebného softwaru (coz je pro provozovani jednodu-
chych GUI aplikaci povéstny kanon na vrabce). Klasické textové aplikace 1ze portovat za pomoci
NDK a emulatoru terminalu (coZ neni bohuZel trivialni)

Tento vyukovy material se zaméfuje jen na vyuziti standardniho SDK za pouziti jazyka Java. To pfi-
rozené znamena, ze ostatni pristupy (pfedevsim vyuziti HTML5 a skriptovacich jazykut) jsou horsi. Ve
skute¢nosti maji mnohé vyhody, avsak rozsah tohoto materialu neumoznuje popsat vSechny alternati-

Vy.

1.2 Java a Android

vvvvvv

o klasickou Javu znamou z dalsich platforem. Na Grovni syntaxe tomu tak opravdu je (pro Android lze
vyuzit jakoukoliv modernéjsi verzi standardni Javy od verze 7 vcetné).

Jinak je tomu na dGrovni knihoven. Android vyuZiva nejen své vlastni knihovny, ale i zcela jiny pro-
gramovaci model. Zcela rozdilna je naptiklad realizace GUI vrstvy (Android nepouziva AWT, SWING
nebo JavaFX).

Jen relativné mala ¢ist knihoven z platformy Java SE je dostupna i na Androidu (tim spise knihovny
jinych javovskych platforem jako je Java ME). Nastésti do této omezené podmnoziny spadaji ¢asto
pouzivané tridy kolekeci a proudu.

Jesté hlubsi rozdily existuji ve fazi vykonavani bytového kodu, ktery se ziska prekladem javovského
kodu. Android pouziva vlastni béhové prostredi oznacované jako ART, ktery vyuziva zcela odlisny
bytovy kod (tento kod je spole¢ny s ptivodnim virtualni strojem s JIT kompilaci, jenz byl oznac¢ovan jako
Dalvik). Tento bytovy kdd je registrové orientovany (standardni bytovy kod JVM vyuziva primarné
zasobnik podobné jako je tomu na platformé NET). Dalvik bytovy kdd by mél byt optimalizovan pro
limitovana zafizeni (je napfiklad o néco kompaktnéjsi), ale existuje k nému jen minimum dokumentace
(i ve vyhledavacdi Google je pivodni stroj Dalvik malem pfedbéhnut islandskou obci Dalvik s 1454
obyvateli). ART nepouziva strategii JIT (just-in-time kompilace), ale AOT (ahead-of-time compilation)
tj. bytovy kod se do strojového preloZi jiz pfi instalaci (vysledkem je béZny unixovy spustitelny soubor).
Tento rozdil se vsak navenek prili§ neprojevuje. ZesloZituje procesni fetézec, nebot vklada dalsi krok
do procesu prekladu javovského kodu. Javovsky kod je nejdfive prelozen do JVM bytového kodu (pri-
pona .class) a pak do kodu Dalviku (pfipona .dex). To se vsak navenek piili§ neprojevuje, nebot preklad
v Android Studiu (resp. jiném vyspélém IDE) je provadén automaticky na pozadi pfi spusténi emula-
toru a zajisti vSechny nezbytné kroky (kromé piekladu Java — JVM — Dalvik, je to i zabaleni do
instala¢niho baliku s pfiponou APK) .

@ OTAZKY

1. Jaké c¢asti knihoven jsou spole¢né pro Android a standardni Javu (Java SE)?
2. Jaky je rozdil mezi JIT a AOT kompilaci?

@ OTAZKY K ZAMYSLENI

1. Jaké jsou vyhody a nevyhody pouziti bytového koédu a virtualniho stroje na mobilni platformé?

2. Jakou pfidanou hodnotu nabizi specializované HTML mobilni frameworky oproti béznym knihov-
nam (napf. jQuery Mobile oproti jQuery)?

2 Vyvojové prostredi Android Studio

CILE KAPITOLY

Tato kapitola popisuje stru¢né postup instalace vyvojového prosttedi Android Studio. Toto prostiedi je
k dispozici volné pro vSechny hlavni desktopové platformy vcetné Linuxu.

Instalace je snadna a tak se popis zaméfuje jen na klicové konfigura¢ni volby. Popsan je stav ve verzi
1.5. V novéjsich verzich se miZe nastaveni lisit (i kdyz zékladni principy jako je volba API zustanou
s vysokou pravdépodobnosti zachovany)

Hlavnim Vasim cilem je ispésna instalace a vytvoreni testovaci aplikace, véetné jejiho ovéfeni v emu-
latoru ¢i realné zafizeni. Pokud pfi tomto procesu k chybé, zkuste nejdfive najit informaci na Internetu
(problémy jsou Casto omezeny jen na mensinu systémi a vyucujici s nimi nemusi mit zddnou zkuse-
nost).

2.1 Instalace

Aplikace pro Android lze vytvaret v libovolném vyvojovém prostiedi poskytujicim, alespon minimalni
podporu pro jazyk Java a spousténi externich nastroji. Tvorba aplikaci v Androidu vyZaduje minimalné
tyto nastroje:

1. JAVA SE SDK (typicky od Oraclu), minimalni verze Java 7, zakladni knihovny a prekladace

2. Android SDK (od Googlu) — obsahujici knihovny, pfekladace a emulatory

3. sestavovaci nastroj (zajisti spravné provedeni celého kompila¢niho fetézce) — minimalné make,

ale vhodnéjsi je vyspélejsi nastroj s pfimou podporou Android nastroji jako napt. Gradle

Cely vyvojovy systém je dnes jiz dost komplexni a jeho udrzovani neni snadné: Proto se doporucuje
vyuzit IDE s pfimou podporou vyvoje pro Android. My budeme vyuZivat IDE Android Studio, coz je
puvodni editor IntelliJ IDEA upraveny a pfizpisobeny pro Android projekty. Toto vyvojové prostiedi
vytvoftila a spravuje firma Google. Je relativné novy (prosinec 2014) avsak jiz od svych pocatkta byl
navrhovan jako zakladni vyvojovy nastroj pro Android (nahradil tak ptivodni plugin pro Eclipse).
Instalace je v zasadé jednoducha a provadi se v téchto krocich:

1. staZeni Java SE JDK (minimalné verze 1.7, nesta¢i JRE), nejlépe pfimo od firmy Oracle

2. kontrola zde je v PATH odkaz na prekladac¢ javac

3. staZeni Android Studio

4. rozbaleni (jedna se o ZIP, TGZ, instala¢ni EXE)

5. prvni spusténi (v ramci, néhoz se stahuje i Android SDK)
Upozornéni: Celkové se stahuje vice nez 1GiB dat a to i v minimalni konfiguraci (realné spise ke 1,5
GiB). Také ostatni hardwarové naroky nejsou malé. Procesor spise tfidy Core i-5 a minimalné 4GiB
paméti (pro béh emulatoru je lepsi 8GiB).
Pfi prvnim spusténi staci zvolit standardni instalaci, kterd probéhne téméf bez interakce. Vyjimkou
je volba verze SDK. Pfedvoleno je nejvyssi aktualni SDK (to je urceno verzi Androidu, na obrazku 6.0
a Cislem tzv. API na obrazku je to 23). Moderni SDK podporuji i vytvateni aplikaci pro nizsi verze (mensi
API). Pro ovéfeni béhu v nativnim prostfedi (pfedevsim v emulatoru) je mozné pfidat i nizsi API (na
obrazku je to API 15, coz je API mého mobilniho telefonu).

@ 0 Default Settings

(0.) Appearance & Behavior > System Settings > Android SDK Reset
Appearance & Behavior Manager For the Android SDK and Tools used by Andreid Studio
Appearance Android SDK Location: |/home/android/Android/Sdk Edit

Menus and Toolbars

System Settings SDK Platforms | sDK Tools | SDK Update Sites |

Passwords Each Android SDK Platform package includes the Android platform and sources
HTTP Proxy pertaining to an AP level by default. Once installed, Android Studio will automatically
check For updates. Check "show package details" to display individual SCK
Undates . components,
UsageStatlstlcs Name AP|Level Revision Status
Android 6.0 23 2 installed
Notifications [Android 5.1.1 22 2 Mot installed
Quick Lists [Android 5.0.1 21 2 Not installed
Keymap [Android 4.4W.2 20 2 Mot installed
N [Android 4.4.2 19 4 Mot installed
Ed't?r [Android 4.3.1 18 3 Mot installed
Plugins [Android 4.2.2 17 3 Not installed
Build, Execution, Deployment) Android 4.1.2 16 5 Mot installed
Tools ¥ Android 4.0.3 5
] Android 2.3.3 10 2
O Android 2.2 g8 3 Mot installed
[showPackage Details
Launch Standalone SDK Manager Preview packages available! Switch to Preview Channel to see them

m | Camcel_‘ | Apply | ‘ Help

SDK lze samoziejmé pridavat resp. aktualizovat i poté (ve File | Settings).

Po dokonceni instalace se zobrazi hlavni menu pravodct a my jsme pfipraveni vytvofit prvni aplikaci
pro Android.

2.2 Vytvoreni nové aplikace (projektu)

Pro ovéfeni funké¢nosti aplikace (a stazeni obrazl jadra, pokud pouzivame emulator) je dobré vytvorit
a spustit testovaci aplikaci.

V hlavnim menu privodct zvolte Start a new Android Studio project.

& - Android Studio Setup Wizard

% Welcome to Android Studio

Recent Projects Quick Start
E;{ Start a new Android Studio project
E_D' Open an existing Android Studio project
¥ Check out project from Version Control
; Import project (Eclipse ADT, Gradle, etc.)
EE Import an Android code sample
.Jg Configure >

rl;? Docs and How-Tos 2

Andraid Studio 1.5.1 Build 141.2456560. Check Farupdates now.

Nastaveni neni slozité. Vétsina nastaveni se provede v prvnim ze ¢tyf formulafa.

@ O Create New Project

New Project

Android Studio

Configure your new project

Application name: | TestApplication

Company Domain: [ki.ujep‘cz\

Package name: cz.ujep.ki.testapplication

m
EL

Project location: | /home/android/AndroidStudioProjects/TestApplication

Erevious | Dext | Cancel Finish

Aplication name je jméno aplikace, tak jak bude vidét koncovy uzivatel. Jeho pozdéjsi zména je velmi
obtiZna, tj. je nutné volit uvazlivé.
Company domain je doménova Cast adresy tviirce, slouZici (v opacném gardu) jako prefix baliku (jmen-

ného prostoru). MiZete uvést jakoukoliv doménu, u niz muzZete zajistit jedine¢nost jmen vsech balikil
(tj. danou doménu spravujete).

U project location zkontrolujte, zda cesta ukazuje rozumné umisténi (zakladem je tzv. workspace adre-
sar). Umisténi Ize samoziejmé zménit.

Druhy formulaf pritvodce slouzi k nastaveni typu API a minimalniho SDK.

10

@ O Create New Project

Hv Target Android Devices

Select the Form Factors your app will run on

Different platforms may require separate SDKs

Phone and Tablet
Minimum SDK [API 15: Android 4.0.3 (lceCreamSandwich) n

Lower APl levels target more devices, but have fewer features available.

By targeting API15 and later, your app will run on approximately 96,2% of the devices
that are active on the Google Play Stare.

Help me choose
O wiear

Minimum SDK |API 21: Android 5.0 (Lollipop) n
OoTv

Minimum SDK |API21:Andmid 5.0 (Lollipop) n
1 Android Auto
[Glass

Minimum SDK | Glass Development Kit Preview n

Previous ‘ Cancel | Finish ‘

V ramci této opory budeme pouzivat pouze klasické Android API pro telefony a tablety. Volba mini-
méalniho SDK ovliviiuje podil Android zatizeni s nimiz bude aplikace kompatibilni. Cim niz$i API tim
vétsi pocet cilovych zafizeni, ale také méné pouzitelnych GUI prvka (i kdyz mnohé nové prvky jsou
v soucasnosti dostupné i na starsich API diky knihovnam pro zpétnou kompatibilitu).

V ramci kurzu budeme pouzivat minimalni API 15 (tj. verze 4.0.3 a vyssi).

V dalsim formulafi zvolime vzhled tzv. hlavni aktivity (tj. vzhled centralniho okna aplikace). Zvolte
LEmpty activity” (zcela prazdna aktivita). V dalsim okné muzete tifidu aktivity pfejmenovat, ale to je
prozatim zbytecné, tj. sta¢i priavodce ukonéit tlac¢itkem ,,Finish“

Po urcité dobé se vytvofi novy projekt a zobrazi graficky navrhaf rozloZeni. Pro nas je ted zajima-
véjsi kod aktivity a tak projektovém editoru (vlevo, zalozka project), kliknéte ve slozce app/java/-
cz.ujep.ki.testapplication na polozku MainActivity (pozor nikoliv ve sloZce oznacené navic androidTest!).
Otevfte se editor Javy nad kédem dané tfidy. Prostfedi by mélo vypadat podobné jako na nasledujicim
snimku obrazovky (vS§imnéte si, Ze zobrazen je cely tfidy, veskera dalsi funkénost je zdédéna).

11

Eile Edit Wew Navigate Code Analyze Refactor Build Run Teols VCS Window Help

BEHO ¢4 XOM QAR |¢>|EFapdd o b ¥m LA ? Q
i TestApplication) F3app ; F1src F1main) Bl java) Elcz » E1ujep ; E1ki) Bl testapplication) © MainActivity)
" & Android v| @ & | #- 1| B activity_main.xml x | ® MainActivity java x ‘ o
g
2|7 Gaarp package cz.ujep.ki.testapplication; 45
3| » EImanifests E
®| v Djava ~dimport ... El
v EJcz.ujep kitestapplication g
g SFEEITECHVEY % public class MainActivity extends AppCompatActivity { 7
E » [cz.ujep kitestapplication (androidTest @
=
w| » [Cares R o
» (@& Gradle Scripts @override . g
sl protected void onCreate(Bundle savedInstanceState) {]
% super.onCreate(savedInstanceState);
8 X . .
B setContentView(R.layout.activity_main);
= }
v
}
g
£
&
*
&
g £
£ e
B =
: .
3 &
& o
[E Terminal & & Android Monitor & 0: Messages 2 TODO ™ EventLog [E Gradle Console
@ Gradle build finished in 65 994ms | 1:1 ‘LF: |UTF-8=\ ‘ w8

2.3 Spusténi

Pokud chcete aplikace ladit na svém zafizeni s Androidem postacuje jeho propojeni s pocita¢em pomoci
USB kabelu a povoleni ladéni v nastaveni Androidu na daném zaftizeni (sekce Vyvojarska nastaveni).
Pfipojeni provedte jesté pred spusténim aplikace.

Ladicibéh spustite v menu Run | Run App (resp. odpovidajicim tla¢itkem na nastrojové listé nebo stiskem
Shift + F10). Po chvili by se mélo objevit dialogovy box uréujici zafizeni, na némz program pobézi.

@ o0 Device Chooser

) Choose a running device

|Device |[State [|Compatible ||Serial...

@® Launch emulator

Android virtual device: |[n0ne] =A==

7] Use same device for Future launches

‘ Help | OK | Cancel |

Pokud mame pfipojeno Android zafizeni a toto zafizeni bylo rozpoznano, tak je pfednastaveno (v sekci
Choose a running device). Pokud zafizeni neméate musite nakonfigurovat a spustit emulator. Pro vytvo-
feni nové konfigurace emulatoru stisknéte tlacitko vpravo od rozbalovaciho tlacditka ,Android virtu-
al device® (pfi prvnim spousténé obsahuje text [none]). V prvni fazi se voli typ zafizeni podle vzoru
(pokud nemate dostatek paméti a vykonu volte mensi zafizeni a niz§im rozliSenim) a nasledné verze
Androidu, ktery na ném bézi. Fungovat budou jen ty verze, pro néz mate nainstalovano i SDK. Proto
je nejjednodussi zvolit obraz odpovidajici nejvyssimu API (bez Google map), nebot toto SDK se insta-
luje automaticky. Z divodt efektivity volte obraz pro procesory Intel (32 nebo 64 podle verze OS na
pocitaci).

Vysledna konfigurace by mtize vypadat napiiklad takto (mdZzete samoziejmé vyzkouset i dalsi kombi-
nace, a ani jméno neni povinné).

12

TestProject - [~/AndroidStudioProjects/TestProject] - [app] - ~/AndroidStudioProjects/TestProject/app/src/main/java/jffcz/testproject/MainActivity.

Android Virtual Device (AVD)

nfiguration

M

AVD Name Mobil Start-Up Size
3.2" QVCA (ADPZ 3,2" 320x480 mdpi Change...

st Q ¢) B Er=e =) Enables you to test your application on a

. screen that uses a resolution or density not

'7”‘ Marshmallow Android 6.0 x86_64 | Change... | supported by the built-in AVD device frames,

you can create an AVD that uses a custom

Startup size resolution by selecting one of the scale values.
and Scale: i1dp ondevice = 1pxonscreen | v

orientation

Orientation: D C]
Portrait Landscape
Emulated] Use Host GPU
Performance
& Store asnapshot For Faster startup

Device Frame

| Show Advanced Settings |
Previous MNext Cancel I Einish ‘

Po navratu z konfigurace dané zafizeni nastartujte (vhodné je zaskrtnout volbu Use same device for
future launches) a po nékolika desitkach sekund se dockate okna s emulatorem, v ném? bude po dalsi
chvili spusténa dana aplikace (prozatim prazdné okno). Spusténi emulatoru je pomalé i na rychlejsich
strojich a proto okno s emulatorem nechte oteviené. Pii dalsim testovacim spusténi aplikace se virtualni
stroj nemusi startovat a spusténi je vyrazné rychlejsi.

13

3 Zakladni struktura programu a 2D gra-
fika: Mandelbrotka

CILE KAPITOLY

Ukazkova aplikace pro vykresleni fraktalu Mandelbrotovy mnoziny ilustruje nasledujici mechanismy
programovani v Androidu:

1. zZivotni cyklus aplikace

2. zékladni interakce s tzv. aktivitou (obdoba aplika¢niho okna u desktopovych aplikaci) — menu
3. zakladni 2D vykreslovani (bez pouziti OpenGL ES)

4. vyuziti asynchronnich vlaken

5. reakce na vstupni udalosti (dotyky)

Tato aplikace neni zcela klasickou Androidi aplikaci, tvoii vSak dobry pifechod mezi béznymi deskto-
povymi aplikacemi a komplexnéjsimi aplikacemi v Androidu. Navic skvéle vypada :)

3.1 Mandelbrotova mnozina

Mandlebrotova mnoZina je jednim z nejznaméjsich fraktala.

Madelbrodova mnozina je mnozina komplexnich ¢isel c, pro ktera je posloupnost

z20=0, zp41 =z,2l+c

omezena, tj. Ze splituje nasledujici podminku:

Existuje realné ¢islo m takové, Ze pro vSechna n € N je |z,| < m.

Velmi kvalitni popis tohoto fraktilu najdete na anglické Wikipedii (http://en.wikipedia.org/wiki/
Mandelbrot_set, z tohoto ¢lanku jsou pfevzaty i ilustrativni obrazky).

Mandelbrotova mnozZina je souvisla mnozina bodd, jejiz grafem je zvlastni 2D utvar s podivnymi stfa-
patym okrajem (avSak bez vnitfni struktury).

14

http://en.wikipedia.org/wiki/Mandelbrot_set
http://en.wikipedia.org/wiki/Mandelbrot_set

aktivita

V pocitacové grafice se vSak dava prednost representaci, v niz se zohlediiuje i rychlost konvergence.
Vysledny fraktal tak mtize byt tvofen nékolika (barevnymi) pfechody. Tento pfistup zvolime i my, nebot
jen tak vyuZijeme krasné barevné displeje soucasnych tabletti a mobilnich telefonti.

Typicka ukazka konvergentni representace Mandelbrotovy mnoziny tzv. motsky konik (vyskytuje se
mimo jiné u styku jednotlivych kruhovitych a kardoidnich tutvart).

Matematik by zacal ndvrhem a programovanim algoritmu pro vykresleni fraktalu, praktik vsak zac¢ne
vytvafenim kostry aplikace, nebot algoritmus muiZe najit pfimo na strankach anglické Wikipedie (neni
v Javé, ale v tzv. pseudokddu, ale pfevod je snadny).

3.2 Aktivita — jadro Androidi aplikace

Struktura aplikace je v Androidu ovlivnéna nékolika zakladnimi vychodisky (zjednoduseno):
« aplikace vyuziva grafické uZzivatelské rozhrani pro interakci s uZivatelem (pfiCemz jako vstup
jsou preferovany dotyky)
- aplikace je v zasadé nesmrteln4, je provadéna (alespon se tak navenek jevi) od prvniho spusténi
az po (pfipadnou) deinstalaci
« pouze jedna aplikace je tzv. na popfedi tj. vyuziva displej pro interakei s uzivatelem
» hardwarové prostfedky jsou relativné silné omezené tj. bézici aplikaci mize byt odebran nejen
procesor a fyzicka pamét, ale i proces a tim i regiony virtualni paméti
Z tohoto divodu je kliCovym prvkem kazdého interaktivniho GUI programu tzv. aktivita. Aktivita
se stara o grafickou interakci s uzivatelem v téch okamzicich, kdy je aplikace na popredi. Pokud je
vsak odsunuta do pozadi, pak se stava neaktivni a po urcité dobé miize byt spolu s procesem, ktery
ji vykonavéa, nemilosrdné zlikvidovana (a uvolni tak prostfedky potfebnéjsim procesiim). V okamziku,
kdy je opét potieba, se vytvofi novy proces a v ném je instanciovana nova aktivita.

Aktivita tak prochazi béhem své (takika) nesmrtelnosti cyklicky mezi dvéma ¢i ¢tyfmi stavy:

onCreate

\ 4

na popiedi
(visible)

\i

onRestart onStop

pozastavena
(stopped)

onDestroy
(onSavelnstanceState)

destruovana
(destroyed)

15

Pfi pfechodu mezi stavy je jsou volany metody aktivity, v nichZ je mozno alokovat prostfedky (metody
onCreate resp. onRestart), ptislusné prosttedky uvoltiovat (onStop, onDestroy) resp. ukladat stav aktivity
(onSavelnstanceState) a nasledné obnovovat (onCreate). Ukladani je nutné, aby navenek vznikala iluze
stale existence aktivity. Nyni jiz mizeme pfikrocit k vytvofeni (vyvojafského) projektu z hlavniho menu
pruvodi (pfedchozi projekt predtim uzavtete).

3.3 Vytvoreni projektu a jeho pocatecni struktura

Aplikaci pojmenujeme familiarné ,Mandelbrotka®. V konfiguraci hlavni aktivity zvolime opét ,Empty
Activity” a nic nezménime ani na na poslednim konfigura¢nim listé.

Podivejme se nejdfive jaké soubory pro nas IDE vytvofilo (1ze je prochazet pomoci prohliZece projekto-
vych soubort na levé strané). Vétsina vygenerovanych soubort jsou XML soubory, které deklarativné
popisuji konfiguraci aplikace a jejtho GUI rozhrani.

Klicovym souborem je AndroidManifest.xml (ve sloZce app/manifests). Pro jeho prohlizeni lze vyuzit
soubor vestavénych konfiguraénich editorti (viz zalozky dole). Soubor v3ak lze prohliZet (a editovat)
i pfimo pomoci XML editoru (zalozka oznaceni AndroidManifest.xml v editac¢ni oblasti).

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="cz.ujep.ki.mandelbrotka" >

<application

android:allowBackup="true"

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:theme="@style/AppTheme" >

<activity
android:name=".MainActivity"
android:label="@string/app_name'" >
<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android. intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

Manifest aplikace obsahuje nékteré informace, které jsme zadali pfi jejim vytvafeni a néktera dalsi
nastaveni.

U nékterych nastaveni (jako je popisek aplikace android:label) je namisto fixni hodnoty atributu pouZit
odkaz do souborti zdroji. Soubory zdroju (resources) mohou byt vytvareny v nékolika kopiich napft.
pro vicero jazykt nebo vicero typu displeja (rozliseni ¢i velikost). Ve vSech téchto pfipadech mtze
mit atribut jinou (specifickou hodnotu). Naptiklad nazev aplikace se muze lisit podle jazyka, pouzita
ikona podle rozliseni (pii velkém rozliSeni by mohla byt tak mala, Ze by ji neslo snadno identifikovat
dotykem).

Klicovou ¢asti manifestu je specifikace aktivity. Je specifikovano celé jméno jeji tfidy i se jménem bali-
ku, to jest cz.ujep.ki.android.fiser. MainActivity, ale pfedevsim je uréeno na jaké podnéty zvnéjsku bude
reagovat. Aktivity jsou v Androidu jsou relativné samostatné programové jednotky, které jsou aktivo-
vany podnéty z vnéjsku tj. z jinych aktivit. Nase aktivita reaguje na podnét od aktivit, jez funguji jako
launcher, tj. spoustéc aplikaci (to nemusi byt jen jedina aktivita). To znamena, Ze se zafadi do seznamu
spustitelnych aplikaci (jeZ v béZném rozhrani dostupna pres ikonu mfizky ¢tverecku).

16

pohled

Dalsim typem soubort jsou zdroje, které naleznete v adresafi res projektu. Ty jsou €lenény podle typt
(rozvrzeni, jednoduché hodnoty, styly, apod.), pficemz nékteré se vyskytuji ve vice verzich podle kon-
figurace cilového systému (API, displej, jazyk, apod.). Tj. naptiklad kreslitelné objekty (drawable), se
¢leni podle rozliseni displeje (low dpi, medium dpi, high dpi a extra vysoké rozliseni [kdy se do¢kame
ctytikrat x-dpi?]), styly podle ¢isla verzi apod. Toto rozdéleni je vSak jen pocatkem, v plnohodnotné
aplikace mohou byt i desitky rtznych variant.

Pro zacatecnika jsou klicové soubory ve slozce values. Napiiklad v res/values/strings.xml jsou fetézce,
které vidi uzivatel aplikace, véetné napft. popisku aplikace:

<string name="app_name'>Mandelbrotka</string>

Nyni vsak pozornost pfesuneme na zdrojové soubory ve sloZce java. Zde jsou organizovany podle ja-
vovskych balicki. My mame prozatim jen jeden bali¢ek, v némz lezi jen jeden soubor s jedinou tfidou
(v Javé muze byt jen jedina vefejna tfida v souboru). Instanci této tfidy bude jedina aktivita nasi apli-
kace.

package cz.ujep.ki.android.fiser;

import android.os.Bundle;
import android.app.Activity;
import android.view.Menu;

public class MainActivity extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

}

Ttida MainActivity je odvozena ze ttidy Activity (pfesnéji android.app.Activity) a ptredefinovava dveé jeji
metody: onCreate, ktera je volana pfi kazdém vzniku aktivity (véetné znovuzrozeni viz zivotni cyklus
aktivity vySe) a metodu, ktera pfipravuje na zobrazeni menu (onCreateOptionsMenu). Obé se metody
maji néco spole¢ného — vyuzivaji prosttedky z resource adresate. V onCreate je vyplnéno okno aktivity
pomoci rozvrzeni (soubor res/layout/activity_main.xml), v nCreateOptionsMenu pak menu polozkami
ze souboru res/menu/main.xml). Soubory prostfedkil se neuznacuji pfimo, ale pomoci symbolickych
konstant, které jsou pro kazdy soubor v adresari prostfedkti automaticky vytvoreny. To ma dvé hlavni
vyhody:
1. symbolicka konstanta vzdy odkazuje aktualni variantu podle konfigurace systému (rozlieni, ja-
zyk apod.)
2. funguje doplnovani syntaxe. Stac¢i pouzit specificky prefix baliku R, zvolit ze seznamu typ pro-
stfedku a pak pfimo jeho jméno.
Aplikaci lze jiz v tomto okamziku spustit (Run | Run “app’, Shift-F10). Start emulatoru je relativné pomaly
a na pomalych zafizenich muazZe trvat i celé minuty. Nastésti emulator je nutno spoustét jen jednou (pfi
dalsim spusténi lze pouZit stejnou instanci, proto ji pokud mozno nezavirejte).
Po nabéhnuti tivodni obrazovky je nutno tazenim odemknout obrazovku (stejné jako u fyzického zafi-
zeni i kdy?z zde je to zcela zbytecné). Po chvili by se méla objevit aplikace s titulem Mandelbrotka, ktera
je vsak zcela prazdna.

3.4 Vytvoreni tridy pohledu (view)
Dalsim krokem je vytvoreni tzv. pohledu — view. Pohled je aktivni ¢ast okna aktivity, odpovida tudiz

17

widgetm resp. fidicim prvkam (controls), jak je znate z ostatnich GUI knihoven. Bazova tfida (an-
droid.view.View) je pouze pravouhla oblast bez viditelnych grafickych prvki a bez moznosti interakce.
Z této tfidy jsou pfimo i nepfimo odvozeny vSechny aktivni ¢i pasivni prvky prvky, poéinaje textovymi
popisky, pfes rizna tlacitka az po slozité seznamy.

Nas pohled bude zobrazovat Mandelbrotovu mnozinu pfimym vykreslovani a nebude tudiz potfebovat
Zadnou dodate¢nou funkénost nabizenou odvozenymi tfidami pohled. Odvodime ji tedy pfimo ze tfidy
android.view.View.

V Intellij se nové tfidy vytvareji pomoci pruvodce. ProtozZe i tato nova tfida by méla lezet v javovském
bali¢ku cz.ujep.ki....., tak je vhodné priivodce vyvolat z kontextového menu, které ziskame stiskem pra-
vého tlacitka mysi nad jménem balicku.

V ném zvolte volbu New | UIComponent | CustomView a zadejte jméno MandelbrotView.

public class MandelbrotView extends View {

public MandelbrotView(Context context) {
super (context) ;

public MandelbrotView(Context context, AttributeSet attrs) {
super (context, attrs);

public MandelbrotView(Context context, AttributeSet attrs, int defStyle) {
super (context, attrs, defStyle);

}

To je vsak bohuzel posledni ¢ast kddu, jiz 1ze generovat plné automaticky. Nyni jiz musime zacit myslet.

Nejdfive se zamyslime nad atributy daného pohledu. Pohled je uréen dvéma soustavami soufadnic. Prv-
ni je v zasadé pevna a je urcena zobrazovacim zafizeni ¢i pfesnéji obdélnikem v sité pixelll, na némsz je
pohled zobrazen (ve skute¢nosti neni tento obdélnik zcela fixni, méni se napfiklad pfi otoceni zafizeni).
Tato soustava soufadnic mé v souladu s tradici pocitacové grafiky pocatek (0,0) v levém hornim rohu,
pravy dolni roh méa soufadnice (Sifka - 1, vyska - 1).

Druha soustava soufadnic je dana vyfezem komplexni roviny, na niz je Mandelbrotova mnozina defino-
vana. MizZe byt pribéZné ménéna, ¢imz je mozno dosadhnout zdanlivého pfiblizeni ¢i vzdaleni (zoom).
Na pocatku je zobrazovan vyfez komplexni roviny v rozsahu -2 aZz 1 na ose x a -1 az 1 na ose y (do to-
hoto vyfezu se vejde cela Mandelbrotova mnozina). Pfevody mezi témito dvéma soustavami soufadnic
tvori dulezitou ¢ast vykreslovaci ¢asti kodu.

Nez pristoupime k implementaci je jesté nutné vzit v potaz rychlost vypoctu Mandelbrotovy mnoziny
a jejiho vykreslovani. Vypocet je totiz relativné naroény a na pomalejsich strojich muze trvat i nékolik
desitek sekund (pfedevsim v pfipadé, Ze nemaji hardwarovou podporu vypoétia v pohyblivé fadové
carce tj. FPU). Béhem této doby by aktivita nereagovala na akce uZivatele (vCetné naptiklad pokusu
0 jeji zdanlivé ukonceni pfepnutim na domovskou obrazovku). ProtoZe je toto chovani nezadouci, snazi
se Android tyto aplikace detekovat a pokud nereaguji déle nez zvoleny interval (v fadu vy$sich jednotek
vtefin), pak je nemilosrdné ukon¢i. Jinak feceno uzivatel by se nemusel vykresleni ani dockat.
Jedinym feSenim je pfeneseni vypo¢tu Mandelbrotovy mnoziny do zvlastniho vlakna béZiciho na po-
zadi (Android vladkna nejen, Ze podporuje, ale v mnoha ptipadech i doporucuje). Tim vSak vznika dalsi
problém — vladkno na pozadi nemiiZe kreslit do pohledu (resp. obecné nijak manipulovat s GUI). Proto
je nutné kresleni rozdélit do dvou fazi. Nejdfive je ve vypocetnim vlakné vyuzito kresleni do bitmapy
uloZené v paméti (to mizZe trvat i desitky sekund) a aZ poté jeho skonceni je v hlavnim (GUI) vlakné
bitmapy zkopirovana do pohledu (to uz trva jen milisekundy). BEhem vypoétu sice omezime interakci
s uzivatelem (nemutze napftiklad pouZzivat dotyky pro zoom), ale zakladni ovladatelnost zistava zacho-
vana.

18

Tento rozbor ndm jiz umoziuje navrhnout datovou representaci stavi pohledu (tj. nevefejné cleny
instanci tfidy).

private Rect dc;

private RectF mc;

private Bitmap actualBitmap = null;
private Paint paint = new Paint();
private boolean backgroundThread = false;
public float progress = 0.0f;

Datovy ¢len dc representuje vyiez v soufadnicovém systému displeje (zkratka za display coordination).
Pro representaci je vyuzivana instance tiidy android.graphics.Rect, ktera representuje obdélnik v celo-
¢iselnych soufadnicich. Clen de naproti tomu representuje odpovidajici obdélnik v komplexni roviné
(zkratka za mathematics coordination). Je to instance t¥idy android.graphics.RectF, ktera representuje
obdélnik v realnych soutadnicich (tj. v souradnicich typu float).

Poznamka: TFidy jsou uvedeny bez prefixu balicku (= jmenného prostoru), nebot vechny pouzité ba-
licky jsou importovany. Importovani je vyrazné zjednoduseno tim, Ze pfislusny piikaz je automatic-
ky vlozen pfi doplinovani syntaxe. Stadi jen napsat prvni tfi-¢tyfi znaky jména tfidy a pak stisknout
Ctrl+Space. Z nabidnutého seznamu vyberte pozadovanou tfidu, ktera je pak nejen doplnéna, ale je
vloZen i pfikaz pro importovani piislusné tfidy z balicku (pokud jiz neni samoziejmé obsazen).

Dalsi datovy €len representuje bitmapu, kterd ma byt aktualné vykreslovana (instance t¥idy andro-
id.graphics.Bitmap). Zbyvajici ¢leny jsou vyuzivany bud pfi vykreslovani (paint) nebo souvisi vlaknem
generujicim bitmapu (progress a backgroundThread), tém se budeme vénovat aZ o néco pozdéji.
Vsechny datové ¢leny jsou v souladu s principem zapouzdfeni privatni a nelze je tudiz pouZzivat mi-
mo instance ttidy MandelbrotView. V pfipadé matematickych soutadnic (mc) by vsak bylo zdhodno
umoznit ziskani a dokonce i zménu zvnéjsku (napiiklad, pokud bychom chtéli v budoucnu podporo-
vat rucni nastaveni vyfezu nebo galerii oblibenych vyfezl). Proto dodame dvojici metod pro ziskani
(getter) a nastaveni (setter) tohoto atributu (vlastnosti).

public RectF getMc() {
return mc;

public void setMc(RectF mc) {
this.mc = mc;

}

Getter i setter je prozatim trivialni (nic se nekontroluje, neméni se ani representace). Trivialni gettery
a settery je mozno automaticky generovat pomoci nastroje Source | Generate Getters and Setters.

Vytvofeny setter ihned pouzijeme pro inicializaci matematické soustavy soufadnic v konstruktorech
(nastavime vyftez, ktery zajisti vykresleni celé mnoziny). ProtoZe to musime uéinit ve vsech tfech kon-
struktorech, vytvofime pomocnou metodu pro inicializaci (v Javé nelze vzajemné volat konstruktory).

public MandelbrotView(Context context) {
super (context);
init();

public MandelbrotView(Context context, AttributeSet attrs) {
super (context, attrs);
init();

public MandelbrotView(Context context, AttributeSet attrs, int defStyle) {
super (context, attrs, defStyle);

19

init();

public void init() {
setMc(new RectF(-2.0f, 1.0f, 1.0f, -1.0f)); //implicitni vyrez
}

Stejné jako je tomu v pfipadé ostatnich GUI knihoven, je jadrem implementace uZivatelského pohledu
osetfeni udalosti vznikajicich pfi interakci nasi aplikace s uzivatelem a okolim. V prvni verzi budeme
oSetfovat jen dvé udalosti: zménu velikosti pohledu (musime zménit soufadnice zafizeni a nastartovat
generovani nové bitmapy) a pozadavek na prekresleni (musime nakreslit aktualni bitmapu). Navrho-
vy vzor pozorovatel (observer), ktery se pro osetfeni udalosti pouziva (objekt pohledu se zaregistruje
u manazera udalosti a pokud dana situace nastane pak je mu automaticky pfedano fizeni) je v Javé im-
plementovan pomoci dynamického polymorfismu zaloZeného na rozhranich. Kazdy objekt, ktery chce
byt informovan o zménach musi implementovat rozhrani, jehoZ metody oSetfuji jednotlivé udalosti
(jména téchto rozhrani jsou standardné zakoncena slovem Listener, nebot objekt jakoby nasloucha na
konci telefonni linky a je probuzen pfi vzniku udalosti).

V ptipadé udalosti zmény velikosti pohledu a pozadavku prekresleni vsak neni nutné zadné rozhrani
explicitné implementovat, nebot pfislusné (naslouchaci) rozhrani implementuje jiz bazova ttida View.
Proto staci dané metody jen piedefinovat.

@Override

protected void onSizeChanged(int w, int h, int oldw, 1int oldh) {
dc = new Rect(0, 0, w, h);
generateNewBitmap();

}s

@Override
protected void onDraw(Canvas canvas) {
if (actualBitmap == null){
paint.setColor(Color .WHITE);
canvas.drawColor (Color.BLACK) ;
String text = String.format('"Wait, please (%.0f%%)", progress * 100);
canvas.drawText(text, 30, 30, paint);
return;
}
canvas.drawBitmap(actualBitmap, 0, 0, paint);

}

Ké6d metody onSizeChanged (je volana pii zméné velikosti pohledu) je vice nez jednoduchy. Pomoci
parametrtt metody totiz ziskame novou $itku w a §itku h pohledu. Poté staci jen definovat obdélnik
definujici novou zobrazovaci soustavu soufadnic dc a nastartovat generovani nové bitmapy.
Vykreslovaci metoda neni o mnoho slozitéjsi. Pokud neni bitmapa k dispozici (to nastava nejen na
zacCatku, ale i v okamziku kdy se pfipravuje nova bitmapa), pak je vykreslen jen bily text s upozorné-
nim (na ¢erném pozadi). Kreslici plocha je (jak je béZné zvykem) representovana instanci ttidy Canvas
(android.Graphics.Canvas). Tato instance vSak nenese stav vykreslovacich nastroju je tzv. bezestavova
(jako je tomu napt. v GDI+).

Z tohoto duvodu se podstatné lisi metoda pro vyplnéni pozadi (drawColor) od metody (drawText). Za-
timco vyplnéni nepotfebuje znat zadny stav (je jednozna¢né zfejmé, co ma udélat — nastavit kazdy
pixel na pfedanou barvu), je vykresleni textu slozitéjsi. Vysledek musi reflektovat nastaveni pisma,
barvy (popfedi), transformaéni matici, apod. Tyto informace vSak nejsou uloZeny jako (globalni) stav
platna, ale musi byt pfedany jako atributy instance tfidy android.graphics.Paint.

nebot v ramci vykreslovaci metody by se nemély vytvaret nové objekty (jako varovani to oznaci tzv.

20

lint tj. program, ktery na pozadi kontroluje prohfesky proti stylu uplatiiovaném pfi programovani pro
Android). Pfed kazdym pouzitim v metodé pro vykresleni textu je vSak nastaven jeho atribut (vlastnost)
Color, ktery u textu representuje barvu popfredi. Ostatni atributy (napf. pouZity fez pisma) si zachovavaji
standardni nastaveni (u pisma je to napf. systémovy font).

Pro formatovani vystupniho fetézce je pouZita statickd metoda tfidy String (pro C# programatory: po-
zor nazev tfidy musi zacinat velkym pismenem). Pro formatovani se pouZivaji stejné popisovace jako
v jazyce C (a dalsich mnoha jazycich, bohuZel mimo C#). Kromé fixniho textu je vypsan i idaj o pokro-
ku pfi generovani nového obrazku. Ten je uloZen v datovém ¢lenu progress a nabyva hodnot [0, 1] (kde
1 representuje pfirozené 100%).

Nyni uZ se pomalu k blizime k jadru aplikace, nebot nam zbyvé jiZ jen jediny krok — vygenerovani
bitmapy s Mandelbrotovou mnozinou. Jak jsem vsak jiz predeslal, vSe je zkomplikovano tim, Ze tato
¢innost musi byt provedena ve vlastnim vlakné.

API Androidu nabizi hned nékolik tfid, které udélaji z Vaseho programu vicevlaknovou aplikaci. Z4-
kladnim fe$enim je podpora klasického javovského feseni — tfidy Thread. Jeji vyuZiti je snadné, staci
bud v odvozené tridy predefinovat metodu run (ta pak bude vykonana v nové vzniklém vlakné) nebo
zavolat konstruktor bazové tridy a predat ji instanci implementujici rozhrani Runnable (povétsinou se
pouziva anonymni implementace rozhranni). Toto feseni vS§ak nefesi komunikaci mezi nové vzniklym
vldknem a hlavnim (GUI vldknem) a vSeobecné je povaZzovano za méalo robustni (tj. snadno jej pouZijete
chybnym zptsobem). I ve standardni Javé je tudiz povazovano za prekonané.

Android proto nabizi hned nékolik robustnéjsich feseni. Pokud Vam staci chovani typu ,udélej néjakou
ulohu v novém vlakné a po jejim skonceni proved (jednorazovou) obsluhu ve vlakné hlavnim®, pak je
doporucenym feSenim tfida AsyncTask<Params, Progress, Result> (tfida je genericka). Objekt této tfidy
zajisti vykonavani tfi postupnych akci (metod) v pfesné definovaném poradi: nejdfive je vykonana
akce popsana metodou onPreExecute a to v hlavnim vlakné (muZe tedy pfistupovat ke objektiim GUI
vCetné pohledi), poté je vyvolana metoda dolnBackround, které je pfedan objekt (¢i pole objektt) tfidy,
jez je pouzita na misté typového parametru Params (u nas to bude objekt representujici transformaci
mezi souradnicemi pohledu a soufadnicemi komplexni roviny). Jak je zfejmé jiz z nazvu metody, je tato
cast ulohy vykonana na pozadi ve zvlastnim vlakné. Uvnitf této metody tak nelze pfistupovat ke GUI
prvkim a nelze doporudit ani pfistup k ostatnim objekttim, jejichZ kod je vykonavan hlavnim vldknem
(bezpecény je pouze pfistup k objektim odkazovanym pouze instanci ttidy AsyncTask, jez vykonava
ulohu).

Metoda doInBackround na zakladé vstupnich parametra vytvorfi na pozadi vysledek, jehoZ typ je urcen
tfetim typovym parametrem generické tfidy (oznacovan jako Result). Tento objekt je pfedan na vstup
metody onPostExecute. Ta je opét vykonana v hlavnim GUI vlakné. Jeji funkci je zménit GUI podle
vysledného objektu (v nasem pfipadé je vysledkem bitmapa a metoda onPostExecute zajisti vykresleni
bitmapy).

Cely proces je ilustrovan na nasledujicim obrazku:

onProgressUpdate
vysledek
A typu Result
(zde Bitmap)
onPreExecute » dolnBackground » onPostExecute
vstup
typu Params

(zde Transformation)

Obrazek navic ukazuje dal$i moznost, kterou tfida AsyncTask nabizi — uloha na pozadi muze obcas
vyvolavat metodu onProgressUpdate na popfedi (tj. v GUI vldkné), ktera zajistuje aktualizaci informa-
ce o pokroku dosaZzeném pfi vykonavani lohy na pozadi (aby uzivatel nepodlehl predstavé, Ze se nic

21

staticky

vnorena tfida

nedéje). Metodé onProgressUpdate 1ze predat objekt, ktery pokrok kvantifikuje. To miZe byt instance li-
bovolné tfidy (jméno tfidy je druhym tj. prostfednim parametrem generické tfidy AsyncTask). V nasem
pfipadé to bude realné ¢islo v rozsahu [0,1] urcujici jaka ¢ast bitmapy je jiz hotova.

Bohuzel v Javé nelze pouzit typ float resp. double jako typovy parametr generické tfidy, nebot to musi
byt skutecna tfida a tou elementarni typy v Javé nejsou. Jsou totiz z divodu efektivity representovany
jako pfimé hodnoty nikoliv jako plnohodnotné objekty, které jsou z opatfeny dodateénymi informace-
mi, a z proménnych jsou pouze odkazovany (tj. jsou to na rozdil od pfimych hodnot vzdy referen¢ni
typy). Stejny problém je nutno fesit i jazyce C#, ale zde se vyuZziva automaticky pfevod pfimé hodnoty
na objekt a zpét (tzv. boxing a unboxing), ktery tento rozdil pfed uzivatelem zcela ukryva. V Javé je vsak
nutno explicite pouzit tzv. obalujici typ Float (vSimnéte si rozdilné velikosti prvniho pismene). Tento
typ obaluje hodnotu typu float do objektu, ktery lze pouzit i v generickych konstrukcich, a jenz se ve
vétsiné piipadd implicitné konvertuje na ptivodni hodnotovy typ a vice versa (tj. i v Javé je automaticky
boxing a unboxing, ale neni bohuzel zcela transparentni).

s pfedavanim hodnota a vzajemnou komunikaci objekt.

Prvni problém spo€iva v parametru metody na pozadi. Aby bylo moZno vygenerovat bitmapu je nutno
znat obé soustavy soufadnic — jak obdélnik popisujici $itku a vysku pohledu na displeji tak i odpovida-
jici vyfez komplexni roviny. BohuZzel parametrem muZe byt jen jediny objekt (to neni zcela pravda, ale
proménny pocet parametril nabizeny Javou nas problém nefesi). Proto si vytvofime pomocnou tfidu, je-
jiz instance budou fungovat jako pfepravky objekty tfidy Rect (souradnice displeje) a RectF (soufadnice
komplexni roviny).

Abychom zbyte¢né neexportovali tento novy typ navenek (je pouZivan jen uvnitf pomocnych metod
tfidy pohledu) budeme ji definovat jako tzv. staticky vnofenou tfidu (uvnitt tfidy MandelbrotView).

class MabdelbrotView {

static class Transformation {
public Rect dc;
public RectF mc;

public Transformation(Rect dc, RectF mc) {
this.dc = dc;

this.mc = mc;

}

Staticky vnofena tfida nema se svou hostitelskou tfidou p#ili§ mnoho spole¢ného. Hostitelska tfida na-
bizi pouze samu sebe jako jmenny prostor (tj. jen uvnitf hostitelské tfidy je vnofena tfida dostupna
pfimo pres svj identifikator, vné hostitelské tfidy je nutno pouzit jméno kvalifikované hostitelskou
tfidou tj. napt. MandelbrotView.Transformation). Navic ziskaji instance hostitelské tfidy pfistup k pri-
vatnim ¢lentim tfidy vnorené a vice versa. To se ndm hodi, nebot neni nutno vytvaret gettery a settery
pro datové ¢leny vnofeni tfidy, i kdyZ jsou oznaceny jako privatni.

Druhy problém je obdobny. Uvnitf instanci objekta nasi tfidy odvozené z AsyncTask potfebujeme pii-
stup k objektu aktualniho pohledu. Uloha totiz musi (ve své GUI &asti) nastavovat bitmapu a také si vy-
nucovat prekresleni po jeji zméné (aby se nova bitmapa viibec objevila na displeji). Nase implementace
navic méni ¢ita¢ pokroku (= datovy ¢len progress) a pfiznak béhu dlohy na pozadi (datovy ¢len bac-
kgroundThread). Jinak feceno instance tlohy na pozadi musi mit pfistup k pohledu, ktery danou tlohu
vytvoril.

To lze zajistit vloZenim odkazu na pohled do instance tfidy odvozené z AsyncTask<Transformation,
Float, Bitmap>. Protoze se vSak jedné o odkaz na objekt jiné tfidy, nelze pfimo pfistupovat k privatnim
¢lentim pohledu, coz jsou bohuzel vechny ¢leny které hodlame nastavovat. Jejich zvefejnéni ¢i dodani
vefejnych gettert a setterl neni feSenim, nebot nechceme aby mél pfistup kazdy (jen a pouze objekty

22

vnitini t¥ida

uloh na pozadi). To lze sice vyfesit vhodnou volbou pfistupovych specifikatort je to vSak ponékud
komplikované (v literatufre, kterou si bohuzel nepamatuji, je systém pristupovych prav v Javé oznacovan
jako barokotvary, coz muiZe byt po navstévé drazdanské gameldegalerie zcela pochopitelné a priléhavé
pfirovnani).

Nastésti existuje jesté jedno feSeni. Odvozena tfida dloh muze byt definovana jako vnitfni tfida, tj.
jako vnorena tfida bez specifikace static (néktefi ji proto oznacuji jako instancné vnorenou). Instance
instanéné vnofené tfidy maji s instancemi hostitelské tfidy mnohem intimnéjsi vztah. Kazda instance
vnorené tfidy totiz obsahuje (skryty) odkaz na instanci hostitelské tfidy, ktera ji vytvofila (je to obdoba
uzavéri znamych z funkcionalnich jazykt). Uvnitf metod instanci vnofené tfidy je tak mozno piimo
pfistupovat k datovym ¢leniim a metodam tvircovské instance hostitelské tfidy a to pfimo pfres this
(jako by byly zahrnuty do pfimo do instance vnofené tfidy), pfiCemz this lze samoziejmé ve vétsiné
kontextti vynechat.

Definice vnofené tfidy odvozené z AsyncTask je ponékud delsi (obsahuje totiZ mimo jiné i vlastni algo-
ritmus vykreslovani Mandelbrotovy mnoziny).

class MabdelbrotView {

class BitmapAsyncTask extends AsyncTask<Transformation, Float , Bitmap> {
@Override
protected void onPreExecute() {
if(actualBitmap != null)
actualBitmap.recycle();
actualBitmap = null;
backgroundThread = true;
progress = 0f;
invalidate();

@Override
protected Bitmap doInBackground(Transformation... params) {
return getBitmap(params[0]);

@Override

protected void onPostExecute(Bitmap result) {
actualBitmap = result;
backgroundThread = false;
invalidate();

@Override

protected void onProgressUpdate(Float... values) {
progress = values[0];
invalidate();

private Bitmap getBitmap(Transformation t) {
Rect dc = t.dc;
RectF mc = t.mc;
final int max_iteration = 256;
final int progressStep = dc.width() / 10;
int[] palette = new int[max_iteration+1];

float x0, yo, x, y, xtemp, XX, yy;

23

int iteration;

for(int i=0; i < max_iteration+l; i++) {
palette[i] = Color.rgb((2%1i)%256, (3*1)%256, (5%1)%256);

Bitmap b = Bitmap.createBitmap(dc.width(),
dc.height(),
Bitmap.Config.RGB_565);
for(int dx = 0; dx < dc.width(); dx++) {
if(dx % progressStep == 0)
publishProgress((float)dx / dc.width());
for(int dy = 0; dy < dc.height(); dy++) {
x0 = mc.left + mc.width() * (dx - dc.left) / dc.width();
y0 = mc.bottom - mc.height() * (dy - dc.top) / dc.height();
XX =yy = x =y = 0.0f;
iteration = 0;

while (xx + yy < 4 && iteration < max_iteration) {
xtemp = xx - yy + x0;
y = 2%x*xy + y0;
X = xtemp;
XX = X*X}
Yy = Yy*y;
iteration++;
}
b.setPixel(dx, dy, palette[iteration]);

}

return b;

}
}

Podivejme se nejdfive na implementaci, které definuji jednotlivé faze dlohy. V metodé onPreExecute
jsou vykonavany jen pomocné tlohy. Za prvé je aktualni bitmapa zobrazovana v pohledu nastavena na
null (tj. aktualni bitmapa neni k dispozici, namisto toho je zobrazeno upozornéni, Ze vypocet probiha
a je nutno ¢ekat ne jeho dokonéeni). Pokud uz byla néjaka aktualni bitmapa definovana, pak je uvolnéna
pamét, kterou vyuziva v rameci systému (metoda Bitmap.recycle). Pavodni bitmapa totiz stale zlstava
v paméti, i kdy? jiz na ni neodkazuje Zadny odkaz a to véetné paméti lezici mimo objekt (ta je spravovana
opera¢nim systémem). Objekt bude sice nakonec odstranén a dodate¢na pamét uvolnéna finalizatorem
(destruktorem), ale k tomu dojde az v okamziku kdy neni dostatek paméti na hromadé spravované
Javou a je tudiz zavolan garbage collector. K tomu miize dojit aZz o mnoho sekund ¢i minut pozdéji,
kdy uz mtze byt pozdé (dodate¢na pamét je spravovana operatnim systémem nikoliv Javou). Proto je
vhodné prostfedky OS uvolnit hned jak jiZ nejsou potieba (v C# se pro stejny ucel pouziva navrhovy
vzor zalozeny na metodé Dispose z rozhrani IDisposable).

Metoda onPreExecute dale nastavuje pfiznak tlohy béZici na pozadi, aby tak mohlo byt zabranéno béhu
vice soubézny uloh na pozadi. I1kdy?z je to v zasadé mozné, muze to prili§ zatizit procesor a kompliko-
valo by se i zobrazeni informace o prubéhu. Pfiznak backgroundThread je povétsinou synchronizovan
s odkazem na aktualni bitmapu (tj. plati, Ze je nastaven na true pravé tehdy, kdyz ma proménna actu-
alBitmap hodnotu null), neplati to v8ak pfi vzniku pohledu (bitmapa neni k dispozici, ale Zadna tloha
na pozadi nebézi).

Po nastaveni ¢itace pokroku na 0 (zatim neni nic hotovo) je volana metoda MandelbrotView.invalidate
(ta patfi stejné jako nastavované datové ¢leny do odkazovaného hostitelského objektu-pohledu). Tato

24

metoda zneplatni veskery viditelny obsah pohledu, tim Ze vloZi poZadavek na pfekresleni celé jeho
plochy do fronty pozadavkui. Po urcité (povétsinou velmi kratké dobé) je systémem zavolana metoda
MandelbrotView.onDraw, ktera fyzicky zajisti prekresleni pohledu (zde nakresli upozornéni na ¢ekani
se zobrazenim pokroku). Metodu pro zneplatnéni pohledu miZeme bezpeéné volat, nebot jsme stale
v hlavnim GUI vlakné. Tim pfedbéZné nastaveni konéi.

Po urcité dobé po dokonceni metody onPreExecute (kterou opét nelze urcit, je vSak opét ve vétsiné
pripadt velmi kratka) je v jiném vlakné vyvolana metoda doInBackground. Tato metoda bézi paralelné
s GUI vlaknem (v pfipadé, Ze mate k dispozici vice jader pak se mize jednat o skute¢ny paralelismus), tj.
GUI vlakno ztstava responzivni (tj. mtze témér okam?zité reagovat na pozadavky uZivatele a systému).
Télo metody je velmi stru¢né, nebot se pouze vola pomocna metoda pro generovani bitmapy (coz vsak
muze trvat i desitky sekund).

Metoda onPostExecute (ta je opét vykonana v GUI vlakné s jistym zpozdénim po ukonceni piedchozi
metody) ziskava nové vytvofenou bitmapu, jiz ulozi do datového ¢lenu actualBitmap (ten samoziejmé
lezi v hostitelském objektu pohledu), nastavi pfiznak béZici ilohy na false (tj. jiz je mozné spustit dalsi
ulohu) a vyzada si jeji pfekresleni zneplatnénim souc¢asného obsahu pohledu (tj. po jisté dobé je volana
metoda MandelbrotView.onDraw).

Velmi jednoducha je i metoda onProgressUpdate, ktera je volana nékolikrat béhem plnéni bitmapy. Ta
pouze nastavi ¢ita¢ pokroku na pfedanou hodnotu (ta je pfedana z metody getBitmap béZici na pozadi)
a zneplatni pohled. Pfi nasledném vykresleni je jiz zobrazena nova hodnota.

Teprve nyni se dostaneme ke kodu, ktery fraktal generuje do bitmapy. Vétsina kodu metody getBitmap
je vytvorena na zakladé pseudokddu prevzatého z Wikipedie (kdd je pouze pfepsan do Javy a mirné
upraven):

For each pixel (Px, Py) on the screen, do:
{
x0 = scaled x coordinate of pixel
y0 = scaled y coordinate of pixel
X = 0.0
y = 0.0
iteration = 0
max_iteration = 1000
while (x*x + y*xy < 2x2 AND iteration < max_-iteration)
{
xtemp = x*Xx - y*xy + X0
y = 2*x*y + y0
X = xtemp
iteration = diteration + 1
}
color = palette[iteration]
plot(Px, Py, color)
}

Mandelbrot set. (2013, October 6). In Wikipedia, The Free Encyclopedia. Retrieved 18:30, October 6, 2013,
from http://en.wikipedia.org/w/index.php?title=Mandelbrot_set&oldid=575943730

Z tohoto diivodu uvadim jen par poznamek. Bitmapa je vytvofena volanim statické tovarni metody
Bitmap.createBitmap. Tato metoda kromé sirky a vysky bitmapy oc¢ekava format pro uloZeni jednotli-
vych pixeld. Z davodi uspory paméti je pouzit format RGB_565, ktery pro ukladani kazdého pouziva
2 byty (toho 5 bitl pro ¢ervenou a modrou slozku a 6 bitl pro slozku zelenou). Velikost bitmapy totiz
mize byt relativné velka (pfi rozliseni 320x480 je to i v kompaktnim formatu 300 KiB).

Podobné se Setii i pfi representaci realnych ¢isel. Na misto representace dvojitou pfesnosti (double)
je pouzita presnost jednoducha (float). Cilem tentokrat neni Gspora paméti (proménnych typu float je
pouzito jen par), ale urychleni vypoctu (to se projevi predevsim v pfipadé, Ze zafizeni nema vlastni FPU
avypolty jsou emulovany pomoci celo¢iselné aritmetiky). Navic je tento typ kompatibilni s representaci
soufadnicového systému pomoci RectF (typ float je obecné preferovanym typem ve 2D grafice).

25

http://en.wikipedia.org/w/index.php?title=Mandelbrot_set&oldid=575943730

Vsimnéte siivyvolani metody publishProgress, na rovni cyklu pfes sloupce (tj. vnéjsiho hlavniho cyklu
programu, bitmapa se kresli po sloupcich). Tato metoda zajisti nepfimou aktivaci metody onProgressUp-
date v GUI vlakné (je to nepfima aktivace, metoda jen pfida pozadavek do fronty pozadavkt hlavniho
vlakna a ihned se vrati, update se provede az v okamziku kdy se na poZzadavek dostane). Aby se GUI
vlakno zbyte¢né nezatéZovalo, neni pozadavek volan v kazdém sloupci, ale jen po dokonceni kazdych
pfiblizné 10% sloupcit). Metoda pfijima a nasledné pfedava nam jiz znamé ¢islo v rozsahu [0,1].
Posledni zminku si zaslouzi generovani palety (tj. mapovani poétu iteraci na barvy). I kdyz by bylo obec-
né vhodné vyuzivat pfedpfipravenou paletu, je z divoda struénosti vyuzit jednoduchy cyklus, ktery
vytvari paletu spojenim cyklicky se opakujicich barevnych slozek, pficemz perioda se u jednotlivych
slozek lisi.

Po vytvoreni vnitini tfidy implementujici dlohu na pozadi uz zbyva jen doplnit metodu, ktera vytvoii
instanci této tfidy a nastartuje proces jejiho vykonavani (tato metoda patfi pfimo tridé MondelbrotView):

private void generateNewBitmap() {
if(!backgroundThread) {
BitmapAsyncTask task = new BitmapAsyncTask();
task.execute(new Transformation(dc, mc));

}

YT

pozadi, dojde k vytvofeni instance tfidy BitmapAsyncTask a k volani metody jeji execute (parametrem
je prepravka se specifikaci obou soustav soufadnic).

V dalsi fazi je nutno pohled umistit do rozvrzeni, které popisuje vizualni rozhrani aktivita. Proto je
nutné ze spravce balickti otevrit soubor res/layout/activity_main. Objevi se rozhrani navrhare.

Navrhat rozhrani aktivit vestavény do Android Studia neni pfili$ intuitivni a navic se ¢asto méni. Jed-
notlivé akce se tak mohou v riznych verzich lisit (a nikoliv jen v detailech).

V zésadé je nutno provést pét krokit: za prvé vymazat pohled s textem ,Hello, world“ (pokud se tam
nachézi), zménit hlavni rozvrzeni (layout) na linearni (ten je pro zacate¢nika nejjednodussi).

Nyni jiZ mzZete pfidat nové vytvofeny pohled (je dostupny v paleté pohledi v sekci Custom & Library
Views). Pfidani se provede pouhym pfetazenim do navrhu displeje.

Poslednim krokem je odstranéni vyplné (paddingu) kolem pohledu. ProtoZe se jedna o vnitini okraje
(padding je soucasti pohledu nikoliv okolniho rozvrzeni) staci zvolit nové pfidany pohled a v editoru
vlastnosti nastavit padding ve vSech smérech na nula pixelt (left, top, right, bottom).

Poslednim krokem je pojmenovani dané instance pohledu, aby bylo mozno tento pohled jednoduse
odkazovat z hlavniho programu (automaticky zvoleny identifikator je zbyte¢né dlouhy a u slozitéjsich
rozvrzeni mizZe byt matouci). V property editoru zvolte vlastnost id nastavte ji na @+id/view (pouzijte
tlacitko [...] vpravo, pak sta¢i zadat jen view, prefix @+i/, ktery zajisti vygenerovani pfislusné javov-
ského symbolu se vlozi sam)

Pokud se vse povedlo méli bysté vidét nasledujici obrazek:

26

s A BE Dy d iR O W ® v el - Y k= (@)
[# Package Explorer 22 = B [l activity_main.xml 8 = 8 E= outline 22 =5 Y =B
4 — palette —— 3
B& ~ N @ +~ @ Nexusone + @ =~ JHrAppTheme -~ @ MainActivity ~ ~ 7 [|LinearLayoutt
* & Ubs @ Palette hd [view (Mandelbrotview)
v &res (J Form Widgets me =@ 66 qQq a®

» = drawable-hdpi
@ drawable-ldpi
» (= drawable-mdpi
» (= drawable-xhdpi

(J Text Fields

(I Layouts

[composite

[Images & Media

andelbrotka

= Prope §| 13

» (= drawable-xxhdpi [Time & Date Ba(kgrn...
¥ @& layout (0 Transitions ::gg::g Opx
|l activity_main.xml © Advanced Padding Dgx
> & menu (0 other Padding ... Opx
¥ = values m Padding ... Opx
3] dimens.xml [] Mandelbrotview Fn(usal;le =
] strings.xml \Fl?:llliflalty e
4 styles.xml Fits Syst... [
¥ = values-sw600dp Scrollbars
|2 dimens.xml scrollba...
¥ = values-sw720dp-land S‘“_’“ba-" 0
|4 dimens.xml :::235
¥ = values-v11 NextFO.-.-.-
[a styles.xml —— NextFo...
¥ &= values-vi4 |wl NextFo...
4 styles.xml Graphical Layout | (= activity_main.xml NextFo... (=]
|dl AndroidManifest.xml
@, ic_launcher-web.png roblems @ J € De 1 Bl Console @ LogCat & = 0
El proguard-project.txt -
Srofect.przpejrties Saved Filters & = [|[verbose 2| B & (o &

9FM of316M [0}

Jesté dulezitéjsi je pohled do zalozky activity main.xml (nize pod paletou a zobrazeni displeje). Ten
obsahuje navrh v textové (XML) podobé.

Mél by vypadat takto:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android”
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/LinearLayoutl”
android:layout_width="match_parent"
android:layout_height="match_parent”
android:orientation="vertical”
android:paddingBottom="0px"
android:paddinglLeft="0px"
android:paddingRight="0px"
android:paddingTop="0px"
tools:context=".MainActivity" >

<cz.ujep.ki.android.fiser.MandelbrotView
android:id="@+id/view"
android: layout_width="match_parent"
android:layout_height="match_parent"/>
</LinearLayout>

Pokud se XML v podstatnych detailech lisi (podstatna jsou jména elementt a hodnoty atributt, nikoliv
naptiklad pofadi atribut), tak je lze pfimo zménit (zména se projevi automaticky i v grafickém navrhu).
Tim mame prvni navrh aplikace hotovy a miZeme ho prelozit a spustit v emulatoru. Pokud je vse
OK méli byste vidét nejdfive cernou obrazovku s upozornénim a pomalu ¢i rychle rostoucim ¢itacem
pokroku (10, 20, ... 90%) a poté i samotnou Mandelbrotku.

27

% - 5554:Mobil [

I8! Mandelbrotka

3.5 Interakce: dotyky a menu

Navzdory nezpochybnitelné krase fraktalu, v§ak neni aplikace pfilis uspokojujici, nebot jediné co umi,
je zobrazeni statického obrazku. Zadn4 interakce (prepnuti do jiné aplikace napf. pies domovské tla¢itko
vsak nastésti funguje), tim spiSe animace.

Proto musime aplikaci trochu rozsifit (ale jen trochu, nebudeme to na zac¢atku prehanét). Protoze hlav-
nim pozadavkem je pfiblizovaci zoom (abychom vidéli i krasné detaily), tak vytvofime jednoduché
rozhrani zaloZené na dotycich. Po dotyku se objevi detail centrovany na jeho sttedu a zvétSeny dvakrat
v obou smérech.

Aby konkrétni pohled zachytaval dotyky musime ho registrovat jako pfijemce (= listener) pfislusnych
udalosti pomoci jeho vlastni metody setOnTouchListener. My to provedeme pfimo v metodé onCreate
aktivity (tj. pohled nebude tuto moZnost nabizet automaticky bez ohledu na svou domovskou aktivi-
tu). Doplnéna metoda bude mit nasledujici tvar (musi byt obsaZena ve tfidé MainActivity v souboru
MainActivityjava, pfidan je i nové zavedeny datovy clen):

public class MainActivity extends Activity {
private MandelbrotView mbw;

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
mbw = (MandelbrotView) findViewById(R.id.view);
if(savedInstanceState != null)

mbw.setMc ((RectF)savedInstanceState.getParcelable("rect"));

mbw.setOnTouchListener (mbw) ;

}

V prvnim fadku doplnéného kédu, ziskame odkaz na vloZeny pohled. Tento odkaz ziskdme pomoci
metody Activity.findViewByld, jejimz parametrem je symbolicky identifikator pohledu, ktery je odvozen
ze jména zadaného v navrhafi (zadano bylo jméno @+id/view, symbolicka konstanta ma proto tvar
R.id.view). Vraceny odkaz je typovan bazovou tfidou View a musi byt tedy pfetypovan na spravny typ
a az pak ulozen do pfipraveného datového ¢lenu (prozatim by bylo mozno vyuzit i lokalni proménnou,
ale odkaz na pohled se nam brzy bude hodit i v dalsich metodach).

Teprve nyni miiZzeme zavolat registra¢ni metodu, ktera urcuje Ze o veskerych dotycich v ramci nase-
ho jediného pohledu (nebot je adresatem) bude informovan tento pohled sam (je totiZ i parametrem
metody). Obecné muize bat pfijemcem zprav libovolny objekt (tfeba i nase aktivita).

28

Po té co vlozime tento objekt, nam Intelli} oznaci (Cervenym podtrZenim a ikonkou v levém pruhu),
7e v tadku je chyba. Pokud najedeme mysi nad podtrZzenou ¢ast (nebo klikneme na ikonku), tak je
nam nabidnuto feSeni chyby. Bohuzel vétsina navrZenych feSeni nic nefesi (napf. pfetypovani, nebo
zména jména metody). AZ téméf na konci (alespon tak je tomu u mne) je vSak navrzeno spravné feseni
,Let MandelbrotView implement OnTouchListener”. Zvolime toto feSeni a podtrzeni zmizi. Nyni se viak
chyba pro zménu objevi v souboru MandelbrotListener.java (v prohliZeéi balickd se u ikony souboru
objevi mala ¢ervena ikonka chyby).

Proto si zobrazime edita¢ni okno s timto souborem, najdeme podtrzeni v hlaviéce tfidy MandelbrotView
a pokusime se zjistit, jak ji lze automaticky napravit. Tentokrat jsou jen dvé moznosti, z nichz je evident-
né spravna jen jedna ,Add unimplements methods® (feseni ,,Make Mandelbrot abstract” je nepouzitelné,
nebot podpirny koéd musi vytvofit instanci pohledu!).

Po volbé tohoto feseni se do ttidy MandelbrotView ptida metoda onTouch se spravnymi parametry i ty-
pem navratové hodnoty (i kdyzZ je prozatim téméi prazdna). Tento styl programovani (zapis pozado-
vaného doc¢asné neplatného kodu a az nasledné automatizované feseni chyb) nejen zrychli zapis kodu,
ale zajisti, ze kod je po syntaktické a typové strance stale spravny.

Obsah nové vygenerované metody pro obsluhu dotykovych udalosti zaméiite za nasledujici kod:

public boolean onTouch(View v, MotionEvent event) {
if (actualBitmap == null)
return true; // aktudlni bitmapa neni k dispozici

int x = (int)event.getX(0);

int y = (int)event.getY(0);

float x0 = getMc().left + getMc().width() * (x - dc.left) / dc.width();
float y0 = getMc().bottom - getMc().height() * (y - dc.top) / dc.height();

float width = getMc().width() / 2.0f;
float height = getMc().height() / 2.06f;

float left = x0 - width / 2.0f;
float top = y0 - height / 2.0f;

setMc(new RectF(left, top, left + width, top + height));
generateNewBitmap();

return true;

}

Kod je relativné dlouhy, ale neni slozity. Nejdiive je otestovano, zda pravé neni k dispozici aktualni
bitmapa (a misto fraktalu je tak vidét jen hlaska o prodleni). V tomto pfipadé se nic nedéje (to brzy
napravime).

Potom je zjiSténa pozice dotyku v soufadnicich pohledu (tj. v soufadnicové soustavé representované da-
tovym ¢lenem dc). To je trochu zkomplikovano tim, Ze API nativné podporuje vicedotyky (multitouch).
Proto je nutné dotyky v metodé getX indexovat. My vicedotyky prozatim nefe$ime a tak zvolime pozici
prvniho dotyku (s indexem 0).

Dalsi ¢ast kodu prepocitava soufadnice pohledu na soufadnice matematické (komplexni rovinu) a defi-
nuje novy vytez (ten ma stfed v misté dotyku a $ifku a vysku polovi¢ni). Po vypocteni nového vyfezu
je tento nastaven pomoci setteru a je aktivovano generovani nové bitmapy (samozfejmé opét na poza-
di). Obsluzna metoda dotyku pak vraci true, ¢imz potvrzuje ze dotyk obslouzila (tak to ¢ini i v pfipadé,
ze bitmapa neni zobrazena, nebof i ignorovani je zde obsluhou).

Po novém spusténi by jiz méla aplikace reagovat na dotyky a zobrazovat i detaily Mandelbrotovy mno-
Ziny.

Vse se zda v poradku, ale pfi del$im pouzivani aplikace zjistime dva nedostatky (¢asteéné se mohou
i prolinat):

29

serializace

1. po opusténi aplikace a opétném navratu do ni, se obCas stane, Ze se misto ptivodniho detailu
objevi celkovy pohled na mnoZinu (tj. aplikace zapomene svij stav).
2. pfi otoceni zafizeni do polohy na §ifku (resp. naopak na vysku) béhem vypoétu bitmapy se po
jejim skonceni zobrazi ptivodni (neotocena bitmapa)
Nejdfive vyfesime prvni problém, ktery neni omezen jen na tuto aplikaci, nebot témért v§echny aplikace
v Androidu se musi programové postarat o uchovani svého stavu.

Zakladni princip je jednoduchy. Pokud ma byt aktivita (doc¢asné) destruovana tj. odstranéna z paméti,
pak je volana jeji metoda onSavelnstanceState, ktera se musi postarat o uloZeni kli¢ovych informaci
o svém stavu do jednoduché persistentni databaze, ktera je dostupna pomoci instance tfidy Bundle.
Béhem tohoto procesu musi byt jednotlivé idaje serializovany (pfevedeny do souvislého proudu bytir)
tj. ukladané objekty musi byt bud jednoduchého typu nebo byt tzv serializovatelné (obdoba atributu
Serializable u NET). Standardni Java nabizi podporu automatické serializace u vétsiny tfid, je to vsak
naroény proces a vyzaduje podporu kompilatoru (stejné jako v C#). Android vyuZziva jiny, vyrazné
odlehéeny typ serializace. Vétsina kli¢ovych tfid implementuje rozhrani Parcelable (Cesky: zabalitelné
do prepravniho baliku), a tak sami definuji metody pro postupnou serializaci a deserializaci (pfevod
zpét do paméti). Toto rozhrani mohou samoziejmé definovat i uzivatelské tiidy.

@Override

protected void onSavelnstanceState(Bundle outState) {
outState.putParcelable("rect”, mbw.getMc());

}

Objekt persistentni databaze je do metody pfedan jako parametr. Databaze je organizovana jako slovnik,
tj. jednotlivé hodnoty jsou pfistupné pres fetézcovy kli¢. V nasem piipadé uloZime soufadnice vyfezu
komplexni roviny pod klicem "rect"). Tfida RectF, ktera vyfez representuje nastésti implementuje roz-
hrani Parcelable (tj. je serializovatelnd), takZe ndm sta¢i zavolat jedinou metodu pro vloZeni vSech (étyt)
¢iselnych udaji — metodu putParcelable.

Obnoveni tdaji se provadi nejcastéji v metodé onCreate. Jen je nutno oSetfit situaci, kdy je tato metoda
volana poprvé po instalaci. V tomto pfipadé neni databaze s ulozenymi stavy prozatim k dispozici (a my
zobrazime globalni pohled na mnozinu).

if(savedInstanceState != null)
mbw.setMc ((RectF)savedInstanceState.getParcelable("rect"));

Tento fragment kodu musi byt umistén na konci metody onCreate (resp. presnéji kdekoliv za fadkou,
v niz ziskame odkaz na pohled pomoci findByViewld) a jeho vyznam je ziejmy. Pokud persistentni
databaze (odkazovana pomoci parametru savedInstanceState) jiz existuje (tj. neni null), pak je z ni ziskan
(deserializaci) objekt representujici matematické soufadnice (musi byt explicitné pfetypovan na RectF),
jenz je nasledné pouzit pro nastaveni vyfezu v pohledu s Mandelbrotovou mnoZinou.

Nyni pfistoupime k problému, jeZ 1ze obecné popsat jako ignorovani pozadavku na piekresleni mapy
(napf. pfi otoCeni) v okamziku, kdy bézi vypocet jako reakce na jiny pfedchézejici pozadavek napft.
dotyk. To je zfejmy dusledek skutec¢nosti, Ze nase implementace podporuje jen jeden vypocet na po-
zadi, ktery je navic nepferusitelny. Nezbyva nam tedy prozatim nic jiného, néz pozadavek ignorovat
(viz néasledujici klicovy kod metody MandelbrotView.generateNewBitmap):

private void generateNewBitmap() {
if(!backgroundThread) {
BitmapAsyncTask task = new BitmapAsyncTask();
task.execute(new Transformation(dc, mc));

}

ProtozZe podpora vice soubéznych pozadavki neni v zdsadé mozna (zatiZeni systému, problém se zobra-
zenim pribéhu), je jedinym feSenim implementace pfed¢asného preruseni tlohy na pozadi (iloha neni
dokoncena a miZe byt ihned nahrazena jinou).

30

Nejdiive je nutné predeslat, Ze i kdyz lze v zasadé vlakno prerusit i nedobrovolné (analogie zabiti uni-
xovského procesu) nelze to ve vétsiné pfipadt doporudit. Nelze totiz zaruéit, Ze k pferuSeni dojede
v okamziku, kdy to nebude mit negativni vliv na dalsi chod programu (tj. kdyZ jsou uvolnény vsechny
prostfedky, nebo alespon spravné naalokovany a vsechny sdilené datové struktury jsou v konzistent-
nim stavu). Nelze dokonce ani zarudit, ze nedobrovolné ukoncované vlakno jiz (nebo naopak jesté)
nebézi.

Proto je vzdy vhodnéjsi volit dobrovolné ukonceni, kdy uloha na pozadi cyklicky kontroluje pozado-
vany stav vlakna, a je-li oznaceno jako pferusené (pfesnéji je ve stavu planovaného preruseni), pak se
vldkno dobrovolné ukonéi. Tento pfistup podporuje i tfidy AsyncTask<> (a tim samozfejmé i vSechny
od ni odvozené ttidy vCetné nasi BitmapAsyncTask).

Pokud na instanci této tfidy zavolana metoda cancel, pak mohou nastat dvé eventuality: pokud vlak-
no jesté bézi, pak se nastavi ptiznak planovaného ukonceni a ¢eké se na dobrovolné dokoncéeni dlohy.
Predpoklada se, Ze Gloha na pozadi priubézné testuje stav objektu AsyncTask pomoci metody isCanceled.
Pokud tato metoda vrati true, pak se tloha (a tim i vlakno) samo ukon¢i (muaZe vsak uvolnit prostfed-
ky a musi zajistit konzistentni stav dat). Po ukonceni Glohy se namisto metody onPostExecute zavola
metoda onCancelled (v hlavnim vlakné!). AZ poté se metoda cancel ukon¢i a vrati hodnotu true. Méné

nelze prerusit. Metoda cancel vrati v tomto pripadé false.

V nasem pfipadé tak stadi jen mirné modifikovat metodu pro ziskani bitmapy (BitmapAsyncTask.-
getBitmap) a predefinovat metodu onCanceled.

U metody getBitmap staci je dodat test priznaku pferuseni. Tento test by se mél prubézné opakovat, tj.
mél by byt umistén uvnitf cyklu. V naSem pripadé jsou vsak vyuzity tfi irovné vnofeni cykla (vnéjsi
je pres sloupce bitmapy, prostfedni pfes jednotlivé pixely a vnitfni pies iteruje pres jednotlivé prvky
fady, u nich? je zjistovano zda jsou omezené ¢i nikoliv).

VloZeni na pocatek vnéjsiho cyklu muze vést k relativné dlouhé prodlevé (v fadu desetin sekundy),
vloZeni do nejvnitinéjsiho muze algoritmus zpomalit (i kdyz je testovani pfiznaku velmi rychlé), Zvolil
jsem proto zlatou stfedni cestu a test vlozil na zacatek cyklu prostfedniho (tj. per pixel).

Bitmap b = Bitmap.createBitmap(dc.width(), dc.height(), Bitmap.Config.RGB_565);
for(int dx = 0; dx < dc.width(); dx++) { //cyklus pres sloupce
if(dx % progressStep == 0)
publishProgress((float)dx / dc.width());
for(int dy = 0; dy < dc.height(); dy++) { //cyklus pres radky
if(isCancelled()) return b;

Implementace metody BitmapAsyncTask.onCancel je jednoducha (je analogickid metodé onPostExecute)

@Override
protected void onCancelled(Bitmap result) {
if(result != null)
result.recycle();
actualBitmap = null;
backgroundThread = false;
}

Pokud je jiz bitmapa alokovana, pak je uvolnéna jeji pamét spravovana systémem. Aktualni bitmapa
neni samozfejmé nastavena (stara je zahozena a nova neni dokonc¢ena) a ptiznak béhu dlohy na pozadi
je shozen (= nastaven na false).

Posledni zména se pak tyka metody MandelbrotView.generateNewBitmap (tj. metody startujici asyn-
chronni dlohu):

private void generateNewBitmap() {
if(backgroundThread) {
task.cancel(false);

31

task = new BitmapAsyncTask();
task.execute(new Transformation(dc, mc));

}

Hlavni formalni zménou je zména lokalni proménné task na datovy ¢len pohledu. Je to nutné, ne-
bot podpora pfed¢asného ukonéeni vyzaduje pfistup k objektu ulohy i po jejim nastartovani (objekt
je vytvofen v jednom volani metody generateBitmap a ukoncovan v jiném). Parametr false u metody
BitmapAsyncTask.cancel uréuje, Ze nebude u¢inén pokus nedobrovolné ukon¢it vlakno s tlohou.

Tim dospivame do dalsiho rovnovaZného stavu nasi aplikace. Bohuzel pifed¢asné ukoncovani se jen
obtizné ladi (otofeni nemusi mit vzdy ten spravny pozadovany efekt). Proto dodame jesté jednu akei,
ktera navic citelné chybi: moZnost opétovného piechodu na globalni pohled.

Tuto akci zpfistupnime pomoci hlavniho menu, jeZ je v Androidu dosaZitelné pomoci stisku pfislusného
ovladaciho tlacitka (at jiz fyzického ¢i softwarového).

Prvnim krokem je doplnéni (¢i zména) XML souboru definujici obsah hlavniho menu res/menu/main.xml.
Vysledkem by mélo byt menu s jednou polozkou:

<menu xmlns:android="http://schemas.android.com/apk/res/android" >
<jtem
android:id="@+id/globalView"
android:showAsAction="always"
android:icon="@drawable/ic_action_refresh"
android:title="@string/globalView"/>
</menu>

Atribut id stejné jako v pfipadé deklarativnich rozvrzeni obsahuje identifikator, jenz bude dostupny
i v kddu (pod jménem R.id.globalView).

Atribut showAsAction urluje, zda bude akce dostupna i pomoci akéni listy (na horni strané dipleje vedle
nazvu aplikace). To se v tomto pfipadé hodi (je to hlavni akce), a proto tento zptisob povolime (hodnota
always zajisti, Ze tam akce bude umisténa stale).

Akce je vsak v listé representovana ikonou, kterou musime dodat. Navic by to méla byt ikona, jejiZ styl
odpovida doporucenim uvedenym na strankach Android Iconography (http://developer.android.
com/design/style/iconography.html). Pokud navic nejste zkuSeny navrhaf ikon musite se spoko-
jit se standardni nabidkou akéné-listovych ikon, ktera je na téchto strankach k dispozici. Po delsim
hledani jsem zvolil ikonku refresh (Uplné jméno ic_action_refresh).

Posledni atribut (title) by mél obsahovat nazev polozky menu. ProtoZe se vSak zobrazuje navenek, mél
by byt zadan nepfimo. Zde je pouze odkaz na pfislusny soubor deklaraci (miiZe existovat i vice variant,
nejen podle jazyka, je i napf. podle rozliseni displej). V nasem (jednoduchém) ptipadé je soubor ulozen
jako res/values/strings. Zménte jeho obsah tak, aby obsahoval nasledujici XML dokument (nezménén
zUstal nazev aplikace):

<?xml version="1.0" encoding="utf-8"7>
<resources>
<string name="app_name'">Mandelbrotka</string>
<string name="globalView">Global View</string>
</resources>

Ted uz zbyva jen jediny krok k dokonceni aplikace — je potfeba doplnit metodu pro osetfeni aktivace
polozky menu. Metoda (pfedefinovana) se jmenuje onOptionsltemSelected a musi byt umisténa ve t¥idé
aktivity (MainActivity v souboru MainActivity.java).

Struktura metody je jednoducha a neménna. Jadrem je konstrukce switch, ktera zpracovani vétvi podle
identifikatoru zvolené polozky menu (switch je zde akceptovatelny, nebot pocet polozek by mél byt
omezen na maximalné 5-8). V piipadé nasi polozky (R.id.globalView) je obsluha jednoducha. Pohled je

32

http://developer.android.com/design/style/iconography.html
http://developer.android.com/design/style/iconography.html

znovu inicializovan a je spusténo generovani nové bitmapy. To se vSak nedéje pfimym volanim pfi-
slusnych metod (init, generateBitmap), které by mély zistat nevefejné, ale pouzitim nové vytvorené
vysokouroviové metody MandlebrotView.globalView:
public void globalView() {

init();

generateNewBitmap();

}

Nyni miZete menu vyzkouset, stejné jako pferuSeni generovani na pozadi (polozku menu zvolite v oka-
mziku, kdy je vidét ¢erna obrazovka s upozornénim).

33

@ OTAZKY

. Z jakého duvodu je v Androidu pouzit viceuroviovy Zzivotni cyklus aktivit?
. Podle jakych hlavnich kategorii se ¢leni soubory zdroja?
. Co je navrhovy vzor Observer? Jakou roli hraje v Javé a Androidu?

1
2
3
4.
5
6
7

Jaky je rozdil mezi (staticky) vnofenou tfidou a vnitfni tfidou?

. Pro¢ je preruseni asynchronniho vlakna pomoci metody cancel oznacovano jako dobrovolné?
. Co je to akéni lista?

. Jak je aplikaci bézné signalizovano otoceni displeje?

@ OTAZKY K ZAMYSLENI

1.
2.
3.

Jaky je v Androidu vztah mezi aplikaci a procesem?
Jaké metody musi definovat serializovatelny objekt (Parcelable)?

Jaké maximalni ptibliZzeni umoziiuje pouZiti typu float? (vychazejte ze $ifky mantisy tohoto typu).

@ UKOLY

1.

Pridejte do aplikace i moZnost zmengeni. Pouzijte novou polozku menu.

2. Zobrazte v obraze i zakladni informace o aktualnim vyftezu. (dilezité je aby byly vzdy vidét)

34

4 Internetové sluzby a persitentni ulo-
zisté dat : Prevodnik mén

CILE KAPITOLY

Ukazkova aplikace prevodnik mén ilustruje nasledujici mechanismy programovani v Androidu:
« spoluprace nékolika internich aktivit (zde omezena na dvé aktivity) pomoci tzv. umyslu (intent)
« navrh aktivity za pomoci rozvrzeni vyuzivajicich hotovych pohledu
« vyuziti sluzeb (service) pro ¢innosti na pozadi (tj. neinteragujici pfimo s uzivatelem)

« parsovani XML dokumentu ziskaného z Internetu (coz je ¢ast mechanismu vyuziti tzv. WWW
sluzeb)

« vyuziti jednoduché rela¢ni databaze (o jediné tabulce) pro persistentni ukladani dat

Tyto dovednosti lze vyuzit v Sirokém spektru aplikaci, nebot tvoii skute¢né jadro aplikaci v Androidu.

4.1 Zadani

Hlavni funkce aplikace je zobrazeni tabulky kurst ziskanych z XML dokumentu Ceské narodni banky
na nasledujici adrese:

http://www.cnb.cz/cs/financni_trhy/devizovy_trh/kurzy_devizoveho_trhu/denni_kurz.xml

Aplikace by navic méla poskytovat jednoduchy kalkulator pro pfevod mezi ¢eskou korunou a libovol-
nou ménou, jejiz kurs je v daném dokumentu uveden.

Specialnim pozadavkem je uchovani kurst v lokalni databazi, tj. podpora off-line zobrazeni a prepocti.
Tato funkce mizZe byt klicova, nebof poplatky za roamingova data mohou byt téméf astronomické.

4.2 Navrh

Na pfevodniku mén si ukazeme dalsi typicky rys aplikaci v Androidu — modularitu. Aplikace v An-
droidu se sklada z nékolika modult, které spolu nesdileji zadné spoleéné objekty a komunikuji spolu
pomoci protokolu, ktery se podoba protokolu webovych aplikaci, nebot pozadavek je zakédovan do
URL.

Navic, zasleme-li v tomto protokolu pozadavek (v nazvoslovi Androidu umysl - intent), pak nemusi
byt pfedem znam modul, ktery poZadavek splni. Umysl totiZ neadresuje p¥imo modul, ale definuje
obecné sluzbu, ktera ma byt provedena (napfiklad zavolano ¢islo, ziskany dat o kontaktu, zobrazen
soubor, pfehrani multimédii, apod.) Je na systému (ve spolupraci s uzivatelem), jaky modul danou sluzbu
obstara.

Zajimavym rysem této volné vazby mezi pfijemcem a sluzbou, je to, Ze modul nemusi lezet ve stejné
aplikaci, ale miiZe byt poskytovan jinou aplikaci. Tim se de facto stiraji hranice mezi aplikacemi a musi
byt zaveden zcela novy pojem — napf. fetézec uzivatelské interakce. Tento fetézec prochazi mezi apli-
kacemi, vyuzivaje jejich GUI moduly (aktivity), procesy na pozadi (sluzby) a zdroje dat at jiz lokalni

35

http://www.cnb.cz/cs/financni_trhy/devizovy_trh/kurzy_devizoveho_trhu/denni_kurz.xml

tak internetové (poskytovatelé obsahu). Navic mtize reagovat pomoci tzv. pfijemct vefejného vysilani
(broadcast receiver) na udalosti systému i ostatnich aplikaci.

Pokud jiz mate zkuSenosti s praktickym vyuzivanim Androidu, tak mtzete byt ponékud prekvapeni,
nebot hranice mezi aplikacemi nejsou ani ve svété Androidu zdaleka tak vyrazné setfeny. Ve skute¢nosti
je vyse uvedeny model spise idealem, ktery je v nékterych oblastech relativné Siroce reflektovan (napf.
propojeni kontakti, zprav a kalendari), jinde nepfesahuje moznosti desktopu (prehravani multimédii)
a v nékterych oblastech se viibec neprojevuje (neexistuji zde zadné jasné definované a standardizované
sluzby, napft. u textovych editorti nebo skriptovani).

Podobna tendence se projevuje i v na trovni kddu, kdy jsou imysly pouZzivany i pro ucely, které s pu-
vodni siti sluzeb souviseji jen zcela okrajoveé.

1. Gmysly se pouzivaji pro vzajemné volani (fixné uréenych) modula v ramci jedné aplikace. Ty-
pickym vyuzitim je pfepinani mezi aktivitami (obrazovkami). Moduly vs$ak zustavaji relativné
striktné oddéleny, nebot nesdileji Zzadné spole¢né objekty.

2. imysly se pouzivaji i pro implementaci distribuovaného objektového systému. Vazba mezi mo-
duly, je jiz velmi tésna vCetné zdanlivého pfimého sdileni dat.

Tento modularni pohled na aplikaci zohlednime i v nasem navrhu. Aplikace bude obsahovat ¢tyii mo-
duly:

1. aktivitu zobrazujici tabulku kurst (ListingActivity). Tato aktivita je hlavni aktivitou aplikace (tj.
je zobrazena pfi prvnim spusténi aplikace)

2. pomocna aktivita kalkulatord kurst (zvolenid ména vzhledem ke nasi koruné ceské) — Calcula-
torActivity

3. sluzba pro aktualizaci kurst (UpdateService)

4. poskytovatel kursti (CurrencyContentProvider), ktery ostatnim nabizi (abstraktné pojatou) data-
bazi kurst. Pro interni uloZeni bude pouzivat SQL databazi.

Vztah mezi jednotlivymi moduly lze nejlépe ilustrovat obrazkem:

periodically
activates

CurrencyContent
Provider

manages and uses

XML source

interactivelly
activates .
CalculatorActivity

is queried by

SQL database

Vsimnéte si, Ze centralnim modulem z pohledu toku a zpracovani dat je poskytovatel obsahu a Lis-
tingActivity z hlediska fizeni. Jedinym modulem, ktery je navrzen tak, aby mohl byt pouzivan iz jinych
aplikaci je poskytovatel kursové databaze. Je to vSak pouze potencial, nebot neposkytuje Zadné stan-
dardizované a verfejné znamé rozhrani.

4.3 Vytvoreni resp. import projektu

Pfi vytvorfeni projektu zadejte nazev MConverter a hlavni aktivitu pojmenujte ListingActivity. BEhem
uvodniho privodce neni potieba aktivovat Zadna specialni nastaveni.

Soubor manifestu by mél mit nasledujici tvar:
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="cz.ujep.ki.android. fiser"
android:versionCode="1"

36

poskytovatel

obsahu

android:versionName="1.0" >

<uses-sdk
android:minSdkVersion="10"
android:targetSdkVersion="18" />

<uses-permission android:name="android.permission.INTERNET" />

<application
android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android: label="@string/app_name"
android:theme="@style/AppTheme" >
<activity
android:name="cz.ujep.ki.android. fiser.ListingActivity"
android:label="@string/app_name'" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

Jedinym dodate¢né pfidanym prvkem (je mozno ho pridat pfimo v XML editoru) je nastaveni pozado-
vanych prav. Android z bezpe¢nostnich diivod vyZzaduje, aby aplikace explicitné specifikovala prava
k prostfedkim, které mohou byt zneuZity. Uzivatel pak pfi instalaci musi urcit, zda tato prava poskyt-
ne ¢i nikoliv (otazkou je, zda to neni pfecenéni bézného uzivatele). Nase aplikace potiebuje jen jediné
explicitni pravo — pfistup k internetu (identifikator android.permission.INTERNET).

Na rozdil od prvniho projektu nezistane soubor manifestu beze zmény a budeme ho pribéZné rozsiro-
vat, nebot v ném musi byt uvedena informace o kazdém dodate¢ném modulu (aktivité, sluzbé, apod.)
Kéd projektu MConverter je jiz o poznani slozitéjsi a rozsahlejsi. Proto maze byt vhodnym pfistupem
i import jiz hotového projektu a jeho prozkoumani a nasledné rozsifovani.

4.4 ContentsProvider — pristup k databazi

Poskytovatel obsahuPoskytovatel obsahu je modul, ktery poskytuje ostatnim modultim (resp. i ostat-
nim aplikacim) data. Navenek se chova jako datova sluzba standardu REST, uvnitf pouziva datova
ulozisté (bézné je to databaze SQLite)

V nasi aplikaci je poskytovatel obsahu centralnim modulem a proto za¢neme od néj. Prvnim krokem
je vytvoreni tfidy CurrencyContentProvider (kontextové menu projektu New | Class). Klicovym nasta-
venim je bazova tfida, musi ji byt android.content.ContentProvider. Déle si muZete nechat vygenerovat
kostru abstraktnich metod.

Druhym krokem je volba tzv. autority. V zasadé je to jedine¢ny identifikator identifikujiciho poskyto-
vatele a jeho protokol, ktery nabizi (jaké data lze ziskat, jak je identifikovat a jaky budou mit format).
Autorita mé stejny formaét jako javovské balicky, tj. méla by to byt opacné zapsana DNS doména (kterou
bychom méli vlastnit, i byt jeji spravci). My pouzijeme cz.ujep.ki.android.fiser.providers.currencies.

Tuto autoritu musime spolec¢né s poskytovatelem zaregistrovat v souboru manifestu:
<provider
android:name="cz.ujep.ki.android. fiser.CurrencyContentProvider"

android:authorities="cz.ujep.ki.android. fiser.providers.currencies" >
</provider>

37

Nyni jiZ maZzeme pfistoupit k implementaci. Zakladnim rozhodnutim je volba tlozisté. I kdyZz Android
nabizi nékolik persistentnich loZist, je tim nejpruznéjsim a nejpouzivanéjsim SQL databaze vytvorena
a spravovana pomoci knihovny SQLite. Pokud tuto knihovnu znate, mate drobnou konkurené¢ni vyhodu,
ale v zasadé postacuje znalost zékladni a tudiz téméf univerzalni SQL syntaxe.

Pro pfistup ke databazi se nepouziva pfimy SQL kod, ale pomocné tfidy, které jej obaluji do rozhrani
vys$si trovné. BohuZel tim ziskdme vy$si robustnost za cenu dosti nepfehledného a rozvla¢ného kodu.
Navic SQL neni zcela ukryto a musite jej proto alesponi trochu znat.

Dalsi pomocnou tfidou, ktera se v poskytovatelich obsahu bézné vyskytuje je UriMatcher. Jeho funk-
ce je dana vnéjsim rozhranim provideru, které imituje API webovych sluzby typu REST (http://en.
wikipedia.org/wiki/Representational_state_transfer). Tyto sluzby pouzivaji URL pro identifi-
kaci zdroju data (tabulek) i jednotlivych poloZek a to i v nékolika drovnich adresace. Typicky REST
pozadavek muze vypadat napf. takto:

http://geodb.test/staty (HT TP metoda GET)

= vraf celou tabulku stata (v dohodnutém formatu)

http://geodb.test/staty/cz (HTTP metoda PUT)

= zmeén ¢i prepis polozku tabulky statd (cz je zde primarni klic)

Poskytovatel proto musi interné prekladat podobné formovana URL na symbolické identifikatory da-
tabazi a pripadné klice.

Definice poskytovatele zac¢ina definicemi riznych symbolickych konstant (pouzivani pojmenovanych
konstant namisto literald je v Androidu velmi rozsifené):

public class CurrencyContentProvider extends ContentProvider {
private final static String DB_NAME = "currencies.db";
private final static int DB_VERSION = 1;

private final static String TABLE_NAME = "currencies";

Nejdtive jsou definovany konstanty, které urcuji interné pouzivané identifikatory. Jméno databaze je
jméno souboru, ktery je vytvofen v souborovém systému lokalniho ulozisté. Databaze jsou viditelné
pouze v ramci dané aplikace (tj. jméno nemusi byt globalné unikatni). Cislovani verzi se tyka zmén
struktury databaze (pfidani tabulek, zména sloupcit). Pokud dojde k takovéto zméné je nutné toto ¢islo
zvysit (za chvili uvidime pro¢).

public final static String AUTHORITY
= "cz.ujep.ki.android. fiser.providers.currencies';
public final static String CONTENT_URI
= "content://" + AUTHORITY + "/'" + TABLE_NAME;
public final static String CONTENT_TYPE
= "vnd.android.cursor.dir/vnd.cz.ujep.ki.android. fiser.currencies';

Dalsi skupinu tvoii vefejné identifikatory. Je to za prvé identifikace autority (musi byt stejna jako
v manifestu!). Pouziti usnadriuje i URI, které bude pouzito z vnéjsku pro pfistup k poskytovateli (je
to obdoba REST URL). Obsahuje schéma (content:), autoritu (vnéjsi identifikator poskytovatele) a ces-
tu k tabulce (poskytujeme jen jednu tabulku). Posledni fetézcova konstanta, je MIME typ vysledkt
dotazu. Protoze vysledkem neni pfenositelny obecny format (XML nebo JSON), ale binarni kursor za-
visly na struktufe nasi tabulky, je nutno vytvofit novy unikatni identifikator, jehoz zadkladnim typem
je vnd.android.cursor.dir.

public final static String _ID = "_id";

public final static String CODE = "code";
public final static String NAME = "name";
public final static String AMOUNT = "amount";
public final static String RATE = "rate";
public final static String COUNTRY = "country";

38

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer

Dalsi davka konstant definuje jména sloupcti databaze. Jména mohou byt libovolna (samoziejmé SQL
kompatibilni). Je v§ak vhodné doplnit ¢iselny primarni kli¢ s fixnim identifikatorem _id a to navzdory
tomu, Ze tabulka jiZ sloupec pouZitelny jako primarni kli¢ obsahuje (jinak si vyrazné zkomplikujete
7ivot, nebot mnohé tfidy tento kli¢ implicitné predpokladaji).

private static final int CURRENCY_MATCH = 1;

Posledni (opét soukroma) konstanta je vyuzivana instanci tfidy UriMatcher (bude representovat glo-
balni dotaz na tabulkou currency).

Kéd dale pokracuje definicemi pomocnych objekti a jejich inicializaci, ktera se provadi v metodé on-
Create(), jejiz funkce se podoba obdobné metodé v aktivitach. Je volana pfi vytvofeni poskytovatele,
coZ se déje v okamziku, kdy je dotazovan a pfitom jesté (nebo uz) neexistuje.

private OpenHelper dbHelper;
private UriMatcher matcher;

@Override
public boolean onCreate() {
dbHelper = new DatabaseHelper (getContext());
matcher = new UriMatcher (UriMatcher.NO_MATCH);
matcher.addURI (AUTHORITY, TABLE_NAME, CURRENCY_MATCH);
return true;

}

OpenHelper je ttfida, kterd zapouzdfuje vytvafeni databaze (musi byt vytvofena pro kazdou databazi
zvlast). V konstruktoru ocekava tzv. kontext, ktery (zjednodusené) uréuje spole¢ny kontext aplikace
nebo jeji ¢asti. Ve vétsiné pripadd jej ziskame volanim metody getContext (zde je to metoda zdédéna
ze tfidy ContentProvider), nebo je pfimo identickd s modulem (napf. u hlavni aktivity). URIMatcher
je inicializovan mapovanim, které mapuje URI s danou autoritou a cestou na symbolickou konstantu
(¢islo) CURRENCY_MATCH.

Dale je nutno definovat tfidu DataBaseHelper, coZ je specializace tfidy SQLiteOpenHelper pro nasi da-
tabazi. Pro jednoduchost ji vytvofime jako (nevefejnou) statickou vnofenou tfidu:

private static class OpenHelper extends SQLiteOpenHelper {
OpenHelper (Context context) {
super (context, DB_NAME, null, DB_VERSION);

@Override

public void onCreate(SQLiteDatabase db) {
String command =
"CREATE TABLE " + TABLE_NAME + " (" +
_ID + " INTEGER PRIMARY KEY AUTOINCREMENT, " +
CODE + " VARCHAR(3), " +
NAME + " VARCHAR(32), " +
COUNTRY + " VARCHAR(32), " +
AMOUNT + " REAL, " +
RATE + " REAL " + ");";
db.execSQL (command) ;

@Override

public void onUpgrade(SQLiteDatabase db, int oldVersion, 1int newVersion) {
db.execSQL("DROP TABLE IF EXISTS " + TABLE_NAME);
onCreate(db);

39

}

Funkce je jasna. Predefinovana metoda onCreate vytvafi novou tabulku (obecné vsechny tabulky da-
tabaze). K tomu vyuziva SQL piikaz CREATE TABLE, ktery je zkonstruovan za pouziti symbolickych
konstant. P¥i urcovani domén nemusite byt pfilis striktni, nebot SQLite poskytuje jen nékolik méalo
typu, které jsou navic ¢asto zcela zaménitelné (napf. VARCHAR(n) je totéZ co CHAR(N) a TEXT).
Podobné je konstruovana metoda, ktera se vola v pripadé, kdy se zvysi ¢islo verze predané konstrukto-
ru bazové tfidy. PouZité feseni neni sofistikované, ale pro jednoduché databaze akceptovatelné. Stara
databaze je smazana a nova je vytvorena metodou onCreate.

Nasledujici sekce pokracuje v pfedefinovani metod tfidy poskytovatele obsahu (CurrencyContentProvi-
der). Tato Cast vyuziva opakované nékolik idiomu a v zdsadé se neméni (jen se komplikuje pfi pouziti
databaze s vice tabulkami).

@Override
public String getType(Uri uri) {
switch(matcher.match(uri)) {
case CURRENCY_MATCH:
return CONTENT_TYPE;
default:
throw new IllegalArgumentException("Unknown URI " + uri);

}

Metoda mapujici dotazovaci URI na MIME type ziskanych polozek. Zde vratime jednozna¢né defino-
vany podtyp typu vnd.android.cursor.dir (mame pro néj jiz symbolickou konstantu). Hlavné se vsak
v§imnéte, jak je URI pozadavku mapovano na symbolickou konstantu (CURRENCY_MATCH) pomoci

instance UriMatcheru . Konstanta je nasledné mapovana na obsluzny kéd pomoci konstrukce switch.

@Override
public int delete(Uri uri, String selection, String[] selectionArgs) {
SQLiteDatabase db = dbHelper.getWritableDatabase();
int count;
switch (matcher.match(uri)) {
case CURRENCY_MATCH:
count = db.delete(TABLE_NAME, selection, selectionArgs);
break;
default:
throw new IllegalArgumentException("Unknown URI " + uri);
}
getContext () .getContentResolver () .notifyChange(uri, null);
return count;

}

Funkce provadéjici pozadavek na vymaz. Struktura vSech vykonnych metod je podobna. Za prvé zis-
kame objekt, ktery zapouzdfuje vstupy a vystupy databaze. Vymaz databazi méni a proto se pokusime
ziskat objekt, ktery umoziiuje i zapis do databaze (getWritableDatabase). Potom zkontrolujeme dotazo-
vaci URL Odpovida-li vzoru (tj. matcher URI rozezna a vrati symbol odpovidajici nasi jediné tabulce),
pak provedeni delegujeme na objekt zapouzdiujici databazi. Metoda vraci pocet pozménénych fadek,
které si uloZime a nakonec je vratime jako navratovou hodnotu nasi funkce. Pfed tim v§ak musime do
systému notifikovat, co se zménilo, aby mohli byt informovani objekty, které se zaregistrovali u pozo-
rovatele (ndvrhovy vzor observer, nebot poskytovatel slouzi jako model v architekture MVC tj. Model-
-View-Controller).

@Override
public Uri dinsert(Uri uri, ContentValues values) {
SQLiteDatabase db = dbHelper.getWritableDatabase();

40

long 1id;
switch (matcher.match(uri)) {
case CURRENCY_MATCH:
id = db.insert(TABLE_NAME, CODE, values);
break;
default:
throw new IllegalArgumentException("Unknown URI " + uri);

if (id > 0) {
Uri itemUri = ContentUris.withAppendedId(uri, 1id);
getContext().getContentResolver().notifyChange(uri, null);
return itemUri;

throw new SQLException("Failed to insert row into " + uri);

}

Implementace ptikazu INSERT ma stejnou strukturu jako vyse. Jsou zde jen dvé zmény — metoda no-
tifikuje a vraci URI rozsifené o primarni kli¢ nového zdznamu. Nové pfidavany fadek je pfedan jako
objekt tfidy ContentValues. V zasadé je to slovnik mapujici nazvy sloupcti na hodnoty (jesté se s nim
setkame).

@Override
public Cursor query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder) {

SQLiteQueryBuilder gb = new SQLiteQueryBuilder();

switch (matcher.match(uri)) {
case CURRENCY_MATCH:
gb.setTables (TABLE_NAME) ;
break;
default:
throw new IllegalArgumentException("Unknown URI " + uri);

SQLiteDatabase db = dbHelper.getReadableDatabase();
Cursor c = gb.query(db, projection, selection, selectionArgs,
null, null, sortOrder);

c.setNotificationUri(getContext().getContentResolver (), uri);
return c;

}

vvvvvv

Metoda realizujici pfikaz SELECT. Tento pfikaz je o néco slozitéjsi, takze je nutné nejdfive jej sesta-
vit z jednotlivych ¢asti (jsou pfedany jako parametry a odpovidaji jednotlivym ¢astem prikazu napt.
projection je zobrazeni definované bezprostfedné za SELECT, selection a selectionArgs popisuji filtr uve-
deny v ¢asti WHERE). Metoda vraci tzv. kursor, coz je de facto iterator pres virtualni tabulku ziskanou
dotazem (ke kursoru se jesté vratime). Vsimnéte si také, Ze databaze je jen pro Cteni.

@Override
public int update(Uri uri, ContentValues values, String selection,
String[] selectionArgs) {
SQLiteDatabase db = dbHelper.getWritableDatabase();
int count;

41

switch (matcher.match(uri)) {
case CURRENCY_MATCH:
count = db.update(TABLE_NAME, values, selection, selectionArgs);
break;

default:
throw new IllegalArgumentException("Unknown URI " + uri);

getContext().getContentResolver().notifyChange(uri, null);
return count;
}

}

Zde jiz neni nic nového, metoda update je obdobou metody delete, kde nova hodnota je predana jako
u metody insert.

4.5 UpdateService — cteni dat na pozadi

Sluzby jsou moduly, které vykonavaji ¢innosti, které nejsou pfimo svazany s grafickym uzivatelskym
prostfedim. BéZné se oznacuji jako ¢innosti na pozadi, coz vsak vede k urc¢itému zmateni mezi vlakny
a sluzbami.

sluzba (service)

« je modul tj. je oddélen od zbytku aplikace (pfedevsim od aktivit) a mize byt tudiz aktivovan
i z jinych aplikaci. S trochou zjednoduseni je to vlastné aktivita bez mozZnosti vyuziti displeje
a s trochu jinym rezimem Zivotniho cyklu.

« je standardné vykonavana ve stejném vlakné jako aktivita. Tj. ¢innost, kterou provadi by méla
byt bud kratka (maximalné desetiny sekundy), nebo asynchronni (spusténa skute¢né na pozadi
jako je napf. prehravani multimédii). Pokud neni splnéna ani jedna moznost, je mozno vyuzit
explicitné vytvotfeného vlakna (stejné jako u aktivit).

« sluzba maze byt bud jednorazovéa (po zavolani se témér bezprostfedné ukoncéi), nebo trvala. Pokud
je trvala musi zajistit svou persistenci (stejné jako jako aktivita), ¢i svij trvaly nepferuseny béh
(v tomto pfipadé se musi zaregistrovat do listy udalosti)

vlakno

« neni modulem, ale pouhou souéasti ur¢itého modulu, pro néhoz vykonava asynchronni ¢innost
(bézici paralelné s hlavnim vlaknem). Hlavni vlakno tak mtze neprodlené reagovat na pozadavky
GUI nebo systému. Vldkno muze se zbytkem modulu sdilet data tj. objekty (jen je nutno zajistit
synchronizaci pfistupu ke sdilenym objektiim).
V nasi aplikaci sluzba jen pfecte a rozparsuje XML dokument a tidaje z ného vloZzi do vySe implemento-
vaného poskytovatele obsahu. Je to tedy jednorazova sluzba. Musi vSak byt implementovana pomoci
vlaken, nebot pfenos a parsovani dat z internetu mtze trvat ponékud déle (i vtefiny). Android navic
nenabizi asynchronni verzi XML parseru (jako je tomu v .NET).
Avsak ani v tomto pfipadé nepouzijeme vldkno pfimo, nebot i zde existuje pohodInéjsi feseni na vyssi
urovni. Pokud nam staci scénéaf, kdy po obdrzeni pozadavku (intentu) staci vytvofit vlakno a predat
mu pozadavek ke zpracovani (a nafekat na jeho dokonceni a vysledky); pak lze namisto tfidy andro-
id.app.Service pouzit specializovanéjsi bazovou tfidu android.app.IntentService).
Hlavni metodou této tfidy je onHandlelntent. Nejdiive si vSak pfipravime a inicializujeme pomocné
datové cleny:

public class UpdateService extends IntentService {
private static final String uri =

"http://www.cnb.cz/cs/financni_trhy/devizovy_trh/kurzy_devizoveho_trhu/denni_kurz.xml";

42

Handler guiHandler;

public UpdateService() {
super ("UpdateService");

@Override

public void onCreate() {
guiHandler = new Handler();
super.onCreate();

3

Retézcova konstanta obsahuje URL stranky, z niz budeme naé¢itat data (stejné jako v$ude v Androi-
du, i zde plati: nepouzivat literaly, ale symbolické konstanty). Zajimavéjsi je vsak druhy datovy ¢len
(guiHandler), ktery bude po inicializaci obsahovat tzv. handler. Handler uchovava informace o vlakné
a jeho udalostni smyc¢ce a umoznuje ostatnim vlakntim tuto smycku pouzivat (tj. volat kod, ktery se
provede ve smycce jiného vlakna). V nasem pfipadé bude timto vlaknem hlavni (GUI) vlakno. Proto
musime zajistit, aby byl objekt handleru vytvoren v hlavnim GUI vlakné (handler se vzdy vztahuje ke
vladknu, v némz byl vytvoren).

I kdyz by bylo mozno handler inicializovat jiz pfi definici nebo v konstruktoru objektu sluzby (konstruk-
tor i inicializator se vykona v hlavnim vlakné), je tato inicializace pfesunuta az do metody onCreate,
ktera se vola pfi kazdém vytvoreni objektu sluzby (stejné jako u aktivity nebo poskytovatele obsahu).
I tato metoda se vola v hlavnim vlakné (a zcela v souladu s Androidim pfistupem, je v§e vykonano, az
pfi posledni mozné prileZitosti).

Poté sluzba se sluzba zablokuje a ¢eka do okamziku, kdy jiny modul vyjadri imysl ji vyuzit (tj. aktivuje
sluzbu a preda ji objekt tf¥idy Intent). V tomto okamziku se vytvori nové vldkno, které za¢ne vykonavat
metodu onHandlelntent (aktivujici intent je pfedan jako parametr této metody).

@Override
protected void onHandleIntent(Intent 1intent) {
URL url;
InputStream 1input;

try {
url = new URL(uri);
input = url.openConnection().getInputStream();
} catch (MalformedURLException e) {
Log.e("Update service'", "Malformed URL'");
return;
} catch (IOException e) {
//TODO: toast for users
Log.e("Update service', "IO Exception");
return;

}

Na zacatku metody se pokusime otevfit proud, ze kterého budeme ¢ist XML dokument. VyuZijeme
k tomu instanci tfidy URL. To se pfirozené nemusi povést a proto musime osetfit vyjimky (na rozdil od
C# je v Javé nutné vyjimky, alespon formalné osetfit). Prozatim je jedinym oSetfenim vypis chybového
hlaseni do logu (pomoci metody Log.e, kde e symbolizuje error). To je adekvatni v pfipadé vyjimky
ttidy MalformedURLException, nebot ta mizZe vzniknout jen programatorovou chybou (URL je uvedeno
pfimo v programu), je v8ak zcela nedostatecna u chyby ttidy IOException, kde uzivatel nebude nijak
informovan (prosté se jen nic neprovede a nevypise se zdravice (toast) se statistikou, viz dale).

Jadrem metody je piecteni vSech elementit XML dokument a uloZeni ziskanych dat o méné do posky-
tovatele obsahu. I kdy?Z je operace algoritmicky trivialni, je jeji zapis ponékud rozvlekly:

43

XmlPullParser parser = Xml.newPullParser();
ContentResolver resolver = getContentResolver();
int updated = 0;

int dinserted = 0;

Nejdfive si musime pfipravit zdroj, coz je tzv. pull (vytahovaci) XML parser. Tento parser ¢te jednotlivé
XML konstrukce (tagy, text mezi tagy), a to na pozadani. Tento pfistup je bézny v .NET nebyl vsak
podporovan standardni Javou (ta pouzivd SAX server, ktery sice pracuje se stejnymi konstrukcemi,
sam vsak vyvolava jednotlivé metody, tj. typu push (podstrkovaci)).

Objekt tfidy Resolver ndm umoznuje ziskat pfistup k manazeru poskytovateli (konkrétni poskytovatel
je uréen pomoci URI). Ciselné proménné jsou jednoduché ¢itace (abychom mohli poskytnout na zavér
néjakou statistiku).

try {
parser.setInput(input, null);
int eventType = parser.getEventType(); //nacteni prvni konstrukce

while(eventType != XmlPullParser.END_DOCUMENT) { //dokud neni konec dokumentu
if(eventType == XmlPullParser.START_TAG) && //pro kazdy element "radek"
parser.getName() .equals("radek")) {
//vytvorime kontejner pro db. réd
ContentValues val = new ContentValues();
//a vlozime do néj jednotlivé sloupce
putAttrString(parser, '"kod'", val, CurrencyContentProvider.CODE);
putAttrString(parser, "mena'", val, CurrencyContentProvider.NAME);
putAttrInt(parser, "mnozstvi", val, CurrencyContentProvider.AMOUNT);
putAttrDouble(parser, "kurz'", val, CurrencyContentProvider.RATE);
putAttrString(parser, '"zeme'", val, CurrencyContentProvider.COUNTRY);
//pokusime se ho updatovat
Uri contentUri = Uri.parse(CurrencyContentProvider.CONTENT_URI);
int cols = resolver.update(
contentUri, val, CurrencyContentProvider.CODE + "=?2",
new String[]{val.getAsString(CurrencyContentProvider.CODE)});
if(cols == 0) { //nepodari-1i se to, tak jej vlozime (insert)
resolver.insert(contentUri, val);
inserted++;
3
else {
updated++;

3

eventType = parser.next(); //prejdeme na dalsi XML konstrukci
} //konec cyklu pres prvky XML
} catch (XmlPullParserException e) {
Log.e("Update service", "Malformed XML'");
return;
} catch (IOException e) {
Log.e("Update service', "Malformed XML");

return;

}

Zékladem je cyklus pies vSechny elementy s nazvem fadek (pfesnéji pies jejich pocate¢ni tagy). U kaz-
dého tagu ziskame jeho atributy a vloZzime je do kontejneru fadku (= instance tfidy ContentValues).
Pro to vyuzijeme pomocnych metod putAtir... (jejich definici uvidime za chvili). Metodam predavame

44

identifikaci zdroje (parser, ktery odkazuje na pocatecni tag a jméno atributu) a identifikaci cile (kon-
tejner a jméno sloupce). Metody provedou navic pfetypovani a kontrolu typu (proto existuji tfi odli$né
metody).

vvvvvv

(tadek se povétsinou vklada jen jednou pfi prvotnim spusténi, poté se jen aktualizuje). VSimnéte se jak
je konstruovan pozadavek na databazi (ten vola metodu update poskytovatele). Klicem je konstrukce
casti WHERE SQL prikazu UPDATE. Jeden parametr urcuje levou stranu porovnavani, druhy (v podobé
identifikator slovniku) identifikator mény ziskany z kontejneru radku (tj. vygeneruje napt. SQL ve tvaru
UPDATE ... WHERE code = "USD"). Pokud se aktualizace fadku nepodafi (fadek jesté neexistuje a metoda
vraci 0 pozménénych radki), je pouzito vloZeni (to je jednodussi, nebot neni nutno inicializovat fadek).
V obou pripadech se inkrementuji prislusné ¢itace.

Po ukonceni celkové aktualizace vypiSeme uzivateli kratkou zpravu s poc¢tem pfidanych a aktualizo-
vanych fadku. Pro to vyuZijeme tzv. zdravici (angl. toast), coz je maly obdélnik s textem zobrazovany
uprostied displeje. Jinou moznost prakticky prakticky nemame, nebot sluzba nema piistup k displeji
a muze dokonce nastat situaci, Ze v okamziku vypisu upozornéni pouziva displej jina zcela nesouvi-
sejici aplikace (druhou, sloZitéjsi, moznosti je vypis do horni listy udalosti). Vypis trochu komplikuje
skutecnost, Ze se nenachazime v hlavnim GUI vlakné. Pokud bychom zdravici vypsali z tohoto vlakna,
pak by se sice zobrazila, ale nikdy by nezmizela (nezbude nic jiného neZ restartovani systému). Nastésti
mame handler vytvofeny v hlavnim okné takze staci, pouzit jeho metodu post, ktery kod pro vypis vlozi
do udalostni smycky hlavniho vlakna.

Kod samotny je vlozen jako predefinovana metoda instance anonymni tfidy implementujici rozhrani
Runnable. Tento syntakticky prostfedek typicky pro Javu vypada jako volani konstruktoru na rozhrani,
které je vsak doplnéno télem, v némz jsou definovany vSechny metody rozhrani (Ize to pouzit i s abs-
traktni tfidou). Pfeklada¢ Javy vytvori podle definice novou bezejmennou tfidu, jejiz objekt poté zkon-
struuje. Je to ponékud rozvleklejsi obdoba anonymnich delegati a lambda funkci jazyka C# (nastésti
v Intellif sta¢i napsat jen new a jméno rozhrani a editor doplni prazdné definici potfebnych metod).

final String toastText = "Done. Inserted: " + -dinserted + ". Updated: " + updated;

guiHandler.post(new Runnable() { //toast from non-GUI thread
@Override
public void run() {
Toast toast = Toast.makeText(getBaseContext(), toastText, Toast.LENGTH_SHORT);
toast.show();
}}); //konec voléni metody post
} //konec definice metody onHandleIntent

Z implementace sluzby uz chybi jen definice pomocnych metod pro ¢teni atributd, pfetypovani a ulozeni
do kontejneru radku (instance ContentValues).

private static void putAttrString(XmlPullParser parser, String attrName,
ContentValues cv, String colName) {
cv.put(colName, parser.getAttributeValue("", attrName));

private static void putAttrInt(XmlPullParser parser, String attrName,
ContentValues cv, String colName) {
cv.put(colName, Integer.parseInt(parser.getAttributevValue("", attrName)));

private static void putAttrDouble(XmlPullParser parser, String attrName,
ContentValues cv, String colName) {
String svalue = parser.getAttributeValue("", attrName);
if (svalue.contains(",")) { //the source uses "," as decimal point
svalue = svalue.replace(',', '.");

45

}

cv.put(colName, Double.parseDouble(svalue));

}

} //konec tridy update service

Ttidu sluzby nakonec zaregistrujeme v manifestu.

<service android:name="cz.ujep.ki.android. fiser.UpdateService" ></service>

4.6 Hlavni aktivita — seznamovy pohled

Kéd hlavni aktivity neni piili§ rozsahly vyuziva v§ak velkého mnozstvi idiom, které jiz ¢aste¢né zname
avSak s mnohymi se v3ak je§té musime seznamit:

public class ListingActivity extends Activity implements OnItemClickListener {
private Cursor mc;

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
mc = getDataFromProvider();
SimpleCursorAdapter adapter = new SimpleCursorAdapter (
this,
R.layout.1item,
mc,
new String[]{ CurrencyContentProvider.CODE,
CurrencyContentProvider.NAME,
CurrencyContentProvider.AMOUNT,
CurrencyContentProvider.RATE},
new int[]{R.id.itemCode,R.id.itemName,R.id.itemAmount, R.id.itemRate});
ListView v = (ListView)findViewById(R.id.currencyView);
v.setAdapter (adapter);
v.setOnItemClickListener (this);
}

Zacatek metody onCreate je zcela klasicky — nastaveni rozvrzeni. Toto rozvrzenti je specifikovano pomo-
ci souboru res/layout/activity_main.xml a je zcela trivialni (cely displej pod listami je vyplnén pohledem
tridy ListView)

<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"”
android:layout_height="match_parent”
tools:context=".ListingActivity" >

<ListView
android:id="@+id/currencyView"
android: layout_width="match_parent”
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true" >

</ListView>

</RelativelLayout>

46

Druhym krokem je vyplnéni seznamu daty od poskytovatele. Nejdiive ziskame kursor (pouZita je po-
mocna metoda definovana pozdéji, ziskani kursoru nenti totiz zcela trivialni). Hlavnim krokem je vsak
vytvofeni adaptéru, ktery svaze kursor s vizualnim navrhem jednotlivych fadka. Adaptéry jsou dal-
$im klicovym navrhovym vzorem Androidu a spolu se zobrazovacem (zde je to ListView) realizuji ¢ast
View a Controller architektury MVC. I kdyz je pouZity adaptér oznacen jako jednoduchy (instance
SimpleCursorAdapter), tak jeho konstruktor vyzaduje relativné dost parametri:

kontext (zde je kontextem samotny objekt aktivity)

odkaz na deklarativni definici rozvrzeni fadka tabulky (viz dale)

kursor, ktery bude zobrazen

projekce tj. pole jmen téch sloupctr kursoru, ktera budou zobrazeny

M

pole jmen identifikatort, pouzitych v navrhu rozvrzeni pro podpohledy (typicky textova naveésti).
Podpohled, jehoZ identifikator je uveden na n-tém misté, zobrazi text z n-tého sloupce kursoru
(v pofadi uvedenim v pfedchozim seznamu).

Zde pouzité rozvrZeni je deklarovano v souboru res/layout/item.xml a obsahuje ¢tyfi textova navésti
v jednom horizontalné uspofadaném fadku (text navésti se nikde nepouzije).

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android: layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="horizontal"” > <!—— horizontalni usporadani ——>

<TextView
android:id="@+id/itemName"
android: layout_width="0dp"
android:layout_height="wrap_content"
android: layout_weight="1"
android:text="mena"
android:textStyle="bold" />

<TextView
android:id="@+id/itemCode"
android: layout_width="0dp"
android:layout_height="wrap_content"
android: layout_weight="1"
android:text="kod"
android:textColor="#AA0000" /> <!—-—text kédu mény je cerveny—->

<TextView
android:id="@+id/itemAmount"
android: layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android: text="mnozstvi'" />

<TextView
android:id="@+id/itemRate"
android: layout_width="0dp"
android: layout_height="wrap_content"
android: layout_weight="1"
android:text="kurz" />
</LinearLayout>

Po vytvofeni adaptéru, staci adaptér zaregistrovat u seznamového pohledu (setAdapter). Posledni fadek
urcuje, ze udalosti volby jednotlivé polozky dotekem bude obsluhovat nase aktivita (tim, Ze zavola

47

aktivitu kalkulatoru).

Pomocna metoda, ziskavajici kursor je po logické strance trivialni, z jednotlivych ¢asti je zkonstruovan
prikaz select a ten je aplikovan na poskytovateli, jeZ je u¢en pomoci URL Je provedena projekce, ktera
vraci vSechny sloupce (v€etné umeélého primarniho klice) a polozky jsou setfidény vzestupné podle
kédu mény.

private Cursor getDataFromProvider() {

// run query

Uri uri = Uri.parse(CurrencyContentProvider.CONTENT_URI);

String[] projection = new String[] {
CurrencyContentProvider._ID,
CurrencyContentProvider.CODE,
CurrencyContentProvider.NAME,
CurrencyContentProvider.AMOUNT,
CurrencyContentProvider.RATE,
CurrencyContentProvider.COUNTRY

}s

String selection = null;

String[] selectionArgs = null;

String sortOrder = CurrencyContentProvider.CODE + " ASC";

return managedQuery(uri, projection, selection, selectionArgs, sortOrder);

}

Jednotlivé casti dotazu SELECT jsou pouzity v metodé Activity.managedQuery, ktery vraci tzv. fizeny
dotaz, to znamena, ze Zivotni cyklus dotazu je fizen zivotnim cyklem aktivity (jinak fec¢eno dotaz bude
automaticky uvolnén v okamziku, kdy uz nebude potfeba). Tento pfistup neni zcela koser (nemtizeme
presnéji fidit kursor, ani to neni obecny pfistup), v novych verzich je dokonce oznacen za zastaraly. Je
vak velmi jednoduchy a pouZitelny i ve starsich verzich (do API 10 véetné).

Dalsi ¢ast kodu hlavni aktivity osetfuje menu, které obsahuje jen jednu polozku — zadost o updatovani.

@Override

public boolean onCreateOptionsMenu(Menu menu) {
getMenuInflater().inflate(R.menu.activity_main, menu);
return true;

@Override
public boolean onMenultemSelected(int featureId, Menultem -item) {
switch(item.getItemId()) {
case R.id.menu_update:
Intent intent = new Intent(this, UpdateService.class);
startService(intent);
}

return super.onMenultemSelected(featureId, item);

Kéd by mél byt zfejmy, po vyvolani menu je vytvofen pozadavek (intent) na sluzbu, ktera je identifi-
kovéana jménem tfidy, jejiz instance sluzbu vykona (je to tedy fixni vazba na konkrétni implementaci
sluzby). Zapis UpdateService.class vraci objekt, ktery z hlediska reflexe representuje danou ttfidu. Intent
je nasledné pouzit jako parametr metody startService.

Posledni metodou tfidy hlavni aktivity (ListingsActivity) je obsluha volby jedné z poloZek seznamu. Tato
metoda musi byt implementovana, nebot tfida pfislibila implementaci rozhrani OnltemClickListener
a jeji instance samu sebe registrovala jako obsluhu (listener).

@Override
public void onItemClick(AdapterView<?> parent, View view, int position, long id)

48

{
mc.moveToPosition(position);
Bundle bundle = new Bundle();
bundle.putString("CODE",
mc.getString(mc.getColumnIndex (CurrencyContentProvider.CODE)));

bundle.putString("NAME",
mc.getString(mc.getColumnIndex (CurrencyContentProvider.NAME)));

bundle.putDouble ("AMOUNT",
mc.getDouble(mc.getColumnIndex (CurrencyContentProvider.AMOUNT)));

bundle.putDouble("RATE",
mc.getDouble(mc.getColumnIndex (CurrencyContentProvider.RATE)));

bundle.putString("COUNTRY",
mc.getString(mc.getColumnIndex (CurrencyContentProvider.COUNTRY)));

Intent intent = new Intent(this, Calculator.class);
intent.putExtras(bundle);
startActivity(intent);

}

Po vyvolani udalosti ziska obsluzna rutina relativné velké mnozstvi udajiu. My vSak pouzivame jen
index zvolené polozky (= fadku s daji o jedné méné). V prvni ¢asti kodu posuneme ukazatel kurzoru
na zvolenou polozku. Pak se kursoru dotazujeme na jednotlivé sloupce (indexem je ¢islo sloupce, které
ziskdme z jeho jména volanim metody Cursor.getColumnindex, kdd by nemél byt samoziejmé zavisly
na potadi sloupcii v kursoru) a jejich hodnoty vkladame do objektu tfidy Bundle. Bundle je jak jiz vime
jednoduchy slovnik, ktery mapuje hodnoty na (serializované) objekty.

Po pfevzeti vSech idajii 0 méné nastartujeme novou aktivitu. Parametrem je opét imysl (intent), ke
kterému je vSak tentokrat pribalen objekt s dodate¢nymi parametry — naplnéna instance tfidy Bundle.
Tento mechanismus lze obecné pouzivat k pfedani dodate¢nych parametri nové startované aktivité ¢i
sluzbé.

Tim se dostavame k posledni tfidé — aktivité CalculatorActivity.

4.7 CalculatorActivity — aktivni formular

CalculatorActivity je aktivita, ktera se podoba béZnym formulaitim ¢i dialogovym oknim znamym
z desktopovych graficky orientovanych rozhrani.

Formulaf by mél byt aktivni (proto kalkulator), tj. zména obnosu v jedné méné se hned projevi v obnosu
mény druhé (tj. kéizem). Navic budeme podporovat pfiblizné nastaveni transakénich poplaku, které se
nejcastéji projevuji v nastaveni méné vyhodného kursu pro prode;j ¢i koupi (stiedni kurs CNB nikde
nedostanete).

Protoze tato aktivita obsahuje vice pohledd, je jeji navrh v navrhati ponékud slozitéjsi. Mj navrh ma
vzhled zobrazeny na nasledujicim obrazku (XML zapis je jiz pfili§ dlouhy). Jedna se vSak o vnofeni
vertikalni linearni rozloZeni obsahujici dvé rozlozeni horizontalni (s popiskem a a edita¢nim fadkem)
a rozbalovaciho seznamu (spinner, vybér z nékolika variant po rozbaleni). Vsimnéte si pfedevsim iden-
tifikatort u jednotlivych pohleda (vpravo v osnové).

49

ingActivity |9 *activity_main. ||g. activity_caleul 28 | 72 = O &= Outline 23 = O

¥ [LinearLayout1
bl Fullname (TextView) - "Dolar (U
m(E & aa@ @& @\ | [tseartayout
e — it FcCode (TextView) - "USD: "
7| FcAmount (EditText)
¥ [[[] LinearLayout
[abl homeCode (TextView) - "CZK:
¥ 1homeAmount (EditText)
[=] tax (Spinner)

@ » [@DNexusone + B - K AppTheme » @ Calculator = v

Sub Item 1

= Prope % &

Id @+id/LinearLay...
Layout Pa... []
Orientati... | vertical
Gravity
Gravity
Content ...
= LinearLay... |[]
Orientat... vertical
Baseline... [0
Baseline...
Weight ...

ty_calculator.xml Use Larg.../[F]

DEERE_E O

JEEEE

Kéd aktivity za¢ina klicovou metodou onCreate, ktera je v3ak jiz o néco delsi (pfestoze pouZiva nékolik
pomocnych metod):

public class Calculator extends Activity implements OnItemSelectedListener {
EditText fcAmount;
EditText homeAmount;
TextView fcCode;
Spinner tax;
TextView fullName;
private double rate;
private double taxrate;

Datové ¢leny slouzi primarné k uchovani odkazii na jednotlivé dil¢i pohledy (jejich jméno je shodné
se identifikdtorem pohledu). Proménna obsahuje rate obsahuje stfedni kurs, proménné texrate kurs
odvozeny ze stfedniho kursu (poplatek za vyménu vyjadfeny jako procento ¢astky).

Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_calculator);
fcAmount = (EditText)findViewById(R.1id.fcAmount);
homeAmount = (EditText)findViewById(R.1id.homeAmount) ;
fcCode = (TextView)findViewById(R.id.fcCode);
tax = (Spinner)findViewById(R.1id.tax);

Zatim je to zcela klasické nastaveni rozvrZeni a ziskani odkazl na jednotlivé pohledy.

Intent intent = getIntent();
Bundle b = intent.getExtras();

Poté se ziska amysl, ktery aktivitu spustil a je ziskan pfiloZeny balik parametra.

fullName.setText(b.getString("NAME") + " (" + b.getString("COUNTRY") + ")");
fcCode.setText(b.getString("CODE") + ": "),
fcAmount.setText("1");

Zde jsou nastaveny zakladni informaéni pohledy. Jméno mény spolu se statem, koéd mény (druhou je
vzdy koruna) a pocet jednotek mény (na zacatku je to vzdy 1 jednotka)

50

ArrayAdapter<CharSequence> adapter =
ArrayAdapter.createFromResource(this,
R.array.taxes,
android.R.layout.simple_spinner_item);
adapter.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item) ;
tax.setAdapter (adapter);
tax.setOnItemSelectedListener(this);

Nastaveni rozvinovaciho seznamu (spinneru). Seznam textovych hodnot je ziskan z XML souboru res/-
value/string.xml, a ktery ma nasledujici tvar (zkraceno).

<string-array name='"taxes'>
<item>0%</1item>
<item>2%</ditem>

</string-array>

Stejné jako u ListView , je nutno nejdfive vytvofit adaptér spojujici seznam (odkazovany identifika-
torem zdroje) a rozloZeni jednotlivého fadku. V tomto pifipadé je vsak fadek jednoduchy, a tak lze
pouzit vestavény zdroj (layout), ktery je odkazovan identifikdtorem android.R.layout.simple_spinner_-
item (identifikatory vestavénych zdroji zacinaji prefixem android.R a nikoliv jen R). Podobné je pouzit
i standardni rozvinovaci tla¢itko (zdroj android.R.layout.simple_spinner_dropdown_item). Nasledné je
adaptér registrovan.

Aktivita se také registruje jako pfijemce udalosti volby polozky pii pouziti rozvinovaciho seznamu (aby
mohla reagovat na zménu sazby poplatku). Musi proto implementovat rozhrani OnltemSelectedListener.

rate = b.getDouble("RATE") / b.getDouble("AMOUNT");
taxrate = rate * (1.0 + parseTax((String) (tax.getSelectedItem())));

Nasleduje vypocet obou kurst. Procentualni hodnota poplatku je pfectena z rozvinovaciho seznamu,
coZ vyZzaduje trochu pomocného kddu, ktery je umistén v metodé parseTax (viz dale).

refresh(fcAmount.getText().toString(), homeAmount, taxrate);

Toto je volani klicové pomocné metody, ktera zde inicializuje hodnotu edita¢ni fadky obnosu domovské
mény (CZK) podle obnosu mény zahrani¢ni (prvni parametr) za pouziti pfedaného kursu (s poplatkem).

fcAmount.addTextChangedListener (new TextWatcher() {
@Override
public void onTextChanged(CharSequence s, int start, int before, int count) {}

@Override
public void beforeTextChanged(CharSequence s, int start, 1int count, int after) {}

@Override
public void afterTextChanged(Editable s) {
if (fcAmount.hasFocus()) {
refresh(s.toString(), homeAmount, taxrate);

1)

Nasleduje definice obsluhy zmén edita¢niho pole cizi zmény. Ta je tak jednoducha, Ze je pouzita ano-
nymni implementace rozhrani Text Watcher. Implementace musi definovat tfi metody, ale jen jedna neni
prazdna. Metoda afterTextChanged je volano po provedeni editace a jeji funkce je zfejma. Musi znovu
vypocist obnos domaci mény, aby odpovidala zménénému vstupu. Vsimnéte si testu, zda ma hlidany
vstupni fadek zaméfeni (focus). Pokud tomu tak neni, tak byl zménén programové (opac¢nou rutinou pii
zméné obnosu v domaci méné), coz by vedlo k nekoneéné rekurzi (zména obnosu v CZK méni obnos
v zahrani¢ni méné, ta zase méni obnos v domaci, atd.).

51

homeAmount.addTextChangedListener (new TextWatcher() {
@Override
public void onTextChanged(CharSequence s, int start, int before, int count) {}

@Override
public void beforeTextChanged(CharSequence s, int start, int count, int after) {}

@Override
public void afterTextChanged(Editable s) {
if (homeAmount.hasFocus())
refresh(s.toString(), fcAmount, 1.0/taxrate);
1)

} //konec metody onCreate

To je totéz v opacném gardu. Zména obnosu v domaci méné si vynuti zménu obnosu mény zahranicni.
Metoda refresh ma prohozené odkazy na editacni pole a vyuziva pfevracenou hodnotu kurzu.

Nyni uz ndm zbyva jiz jen par metod (véetné vyse pouzitych pomocnych):

private static double parseTax(String s) {
return Double.parseDouble(s.substring(0, s.length() - 1)) / 100.0;
}

Pomocna metoda parseTax prevadi fadek rozvinovaciho seznamu na odpovidajici ¢islo. Odstranuje po-
sledni znak (to je procento, to neni pfili§ robustni, ale programator si to miiZe ohlidat), pfevadi na ¢islo
typu double a déli stem.

private static void refresh(String amount, EditText target, double rate) {
double origAmount;
if (amount.equals(""))
origAmount = 0.0;
else {
NumberFormat format = NumberFormat.getInstance(Locale.getDefault());
Number number;
try {
number = format.parse(amount);
origAmount = number.doubleValue();
} catch (ParseException e) {origAmount = Double.parseDouble(amount);}
}

double targetAmount = origAmount * rate;

target.setText(String. format("%.2f", targetAmount));
}

Nejslozitéjsi pomocna metoda. V zasadé se jedna o pouhy vypocet cilového obnosu podle pfedaného
kursu (pfedposledni fadek) a jeho nastaveni v editaénim fadku. Ve vsak komplikuje konverze zdrojo-
vého udaje, ktera musi zohlednit:

1. moznost prazdného vstupniho radku (ten je pak chapan jako nulovy). Chybny forméat neni po-
tfeba kontrolovat, nebot edita¢ni fadky maji definovan typ vstupu (inputType) na "decimal’, tj.
Zadnou jinou hodnotu nez ¢islo nelze vlozit (edita¢ni fadky s béZnymi vstupnimi poli jsou k dis-
pozici jiz v toolboxu).

2. nutnost oSetieni narodnich nastaveni (vstupni ¢islo je vzdy v narodnim nastaveni). Navic to uka-
zuje dalsi cestu jak pretypovat fetézec (a navic ukazuje, Ze v Javé existuje nadttida vSech ¢iselnych
tfid, na rozdil od .NET).

@Override
public void onItemSelected(AdapterView<?> parent, View view, 1int position, long id) {

52

taxrate = rate * (1.0 + parseTax((String)parent.getItemAtPosition(position)));
if (fcAmount.hasFocus())

refresh(fcAmount.getText().toString(), homeAmount, taxrate);
if (homeAmount.hasFocus())

refresh(homeAmount.getText().toString(), fcAmount, 1.0 / taxrate);

}

Metoda implementujici rozhrani OnltemSelectedListener, ktera je volana pii volbé jiné hodnoty na roz-
vinovacim seznamu (tj. zméné urovné kursovniho poplatku). Kod je zfejmy, vypocita se novy opraveny
kurs a zjisti se jaky edita¢ni fadek ma zaméfeni. Tento fadek se nezméni, naopak se stane zdrojem pro
zménu obnosu ve druhé méné.

Rozhrani OnltemSelectedListener vyzaduje i definici metody, ktera je volana v pfipadé, Ze neni zvolena
zadna polozka s rozvinovaciho seznamu. To u nas nemiZe nastat (doufam), ale v kazdém pripadé musi
byt tato metoda definovana, i kdyZ jako prazdna.

@Override
public void onNothingSelected(AdapterView<?> arg0) {}
} //konec definice tridy CalculatorActivity

Tim méame hotovu implementaci aktivity kalkulatoru a celého projektu. Zbyva jen dodat aktivitu do
souboru manifestu:

<activity
android:name="cz.ujep.ki.android. fiser.Calculator"
android:label="@string/title_activity_calculator" > </activity>

Véetné fetézce ve zdroji fetézcti (res/value/string.xml):

<string name="title_activity_calculator'>Calculator</string>

Pro kontrolu si ukazme vzhled hlavni aktivity.

MConverter
dolar AUD 1 17.907
lev BGN 1 13.092
real BRL 1 8.593
dolar CAD 1 18.252
frank CHF 1 20.798
renminbi CNY 1 3.005
koruna DKK 1 3.433
euro EUR 1 25.605
libra GBP 1 30.255
dolar HKD 1 2.443
kuna HRK 1 3.363
forint HUF 100 8.644
rupie IDR 1000 1.643
Sekel ILS 1 5.312
rupie INR 100 30.592
jen JPY 100 19.464
A oo oo Upenes e}
lat LVL 1 36.438
peso MXN 1 1.438
ringgit MYR 1 % 5.028
leossssn RO 1 217

a na grafické rozhrani kalkulatoru.

53

ringgit (Malajsie)
MYR: 780.98

CZK: | 5000

‘B% -

54

@ OTAZKY

. Jaky je v Androidu vztah mezi sluzbou a vlaknem?

. Jaké rozhrani nabizi navenek poskytovatel obsahu?

1
2
3. Jakou roli hraje verzovani datového tlozisté?
4. Jakou funkci ma (datovy) adaptér?

5

. K ¢emu slouzi handler?

@ OTAZKY K ZAMYSLENI

1. Jaké vestavéné poskytovatele obsahu Android obsahuje?
2. Jaké prostfedky pro informovani uzivatele o béhu sluzby lze vyuzit kromé zdravice (toastu)?
3. Jaky je rozdil mezi PULL a PUSH parserem u XML?

4. Kde je ulozena databaze spravovana poskytovatelem obsahu?

55

5 Geolokace

@ ODKAZY NA LITERATURU

ALLEN, Grant. Android 4: pritvodce programovanim mobilnich aplikaci. 1. vyd. Brno: Computer Press,
2013. Kapitoly 39-40 (527-548).

@ OTAZKY

1. Jaky rozsah maji soufadnice longitude, latitude a altitude?
2. Jaky je rozdil mezi COARSE_LOCATION a FINE_LOCATION?
3. Co je POI?

@ OTAZKY K ZAMYSLENI

1. Jaké metody geolokace Android pouziva? Uvedte jejich vyhody a nevyhody?
2. Jaké dil¢i sluzby nabizi Google API?

56

6 Sensory

@ ODKAZY NA LITERATURU

Android Developers. Sensors Overview.

Dostupné na http://developer.android.com/guide/topics/sensors/sensors_overview.html
Android Developers. Motion Sensors

Dostupné na http://developer.android.com/guide/topics/sensors/sensors_motion.html
Android Developers. Environment Sensors.

Dostupné na http://developer.android.com/guide/topics/sensors/sensors_motion.html

@ OTAZKY

. Jaké zakladni typy a druhy senzort existuji?
. Jaké zékladni tfidy existuji?

. Jak se ziskavaji data se senzorii?

1
2
3
4. Popiste prostorovou soustavu vyuzivanou senzory?
5. K ¢emu je gyroskop?

6

. Co je linearni akcelerometr?

@ OTAZKY K ZAMYSLENI

1. Co jsou virtualni senzory? Jakou maji funkei?

2. Co je rosny bod? Jak se pocita?

57

http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://developer.android.com/guide/topics/sensors/sensors_motion.html
http://developer.android.com/guide/topics/sensors/sensors_motion.html

	Úvodní slovo
	Android z pohledu programátora
	Jak lze v Androidu programovat
	Java a Android

	Vývojové prostředí Android Studio
	Instalace
	Vytvoření nové aplikace (projektu)
	Spuštění

	Základní struktura programu a 2D grafika: Mandelbrotka
	Mandelbrotova množina
	Aktivita — jádro Androidí aplikace
	Vytvoření projektu a jeho počáteční struktura
	Vytvoření třídy pohledu (view)
	Interakce: dotyky a menu

	Internetové služby a persitentní úložiště dat : Převodník měn
	Zadání
	Návrh
	Vytvoření resp. import projektu
	ContentsProvider — přístup k databázi
	UpdateService — čtení dat na pozadí
	Hlavní aktivita — seznamový pohled
	CalculatorActivity — aktivní formulář

	Geolokace
	Sensory

